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Combinatorial Testing
2

Modern software systems are highly configurable and involve 
many interacting parameters

Combinatorial testing is a widely used and practical technique 
for detecting failures caused by the parameter interactions

One of the key challenges in combinatorial testing is covering 
array generation, which is an noteworthy area of research

From Kuhn et al., 70% of failures can be detected by 2-way 
interactions of the software system’s parameters

Covering arrays can save testing time while still detecting many 
important software faults
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2-way Covering Arrays
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Suppose there are 4 parameters (pa1, pa2, 
pa3, and pa4) in a system under test (SUT), 
each with 3 values (0, 1, 2)

If we want to cover all 54 pair-wise 
interactions between every 2 parameters in 
the SUT, then only 9 test cases are needed

What is the most efficient and effective 
method for generating covering arrays?
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Evolutionary Search Techniques
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• OFOT: One Factor One Time Method

• AETG: Automatic Efficient Tests Generator

Mathematical and Greedy Methods

• Particle swarm optimization

• Simulated annealing

• Ant colony optimization

Evolutionary Search Techniques

This paper studies and improves genetic 

algorithms for covering array generation
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Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

Genetic algorithms solve complex problems
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Experimental Results
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Please see the paper for additional insights 

concerning the experimental results

Experimental Results
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