
EMPIRICALLY IDENTIFYING THE

BEST GENETIC ALGORITHM

FOR COVERING ARRAY GENERATION

Liang Yalan1, Changhai Nie1, Jonathan M. Kauffman2, 

Gregory M. Kapfhammer2, Hareton Leung3

1Department of Computer Science and Technology, Nanjing University
2Department of Computer Science, Allegheny College

3Department of Computing, Hong Kong Polytechnic University

1

3rd International Symposium on Search Based Software Engineering

Szeged, Hungary

September 10-12, 2011



Combinatorial Testing
2

Modern software systems are highly configurable and involve 
many interacting parameters

Combinatorial testing is a widely used and practical technique 
for detecting failures caused by the parameter interactions

One of the key challenges in combinatorial testing is covering 
array generation, which is an noteworthy area of research

From Kuhn et al., 70% of failures can be detected by 2-way 
interactions of the software system’s parameters

Covering arrays can save testing time while still detecting many 
important software faults



Combinatorial Testing
3

Modern software systems are highly configurable and involve 
many interacting parameters

Combinatorial testing is a widely used and practical technique 
for detecting failures caused by the parameter interactions

One of the key challenges in combinatorial testing is covering 
array generation, which is an noteworthy area of research

From Kuhn et al., 70% of failures can be detected by 2-way 
interactions of the software system’s parameters

Covering arrays can save testing time while still detecting many 
important software faults



Combinatorial Testing
4

Modern software systems are highly configurable and involve 
many interacting parameters

Combinatorial testing is a widely used and practical technique 
for detecting failures caused by the parameter interactions

One of the key challenges in combinatorial testing is covering 
array generation, which is an noteworthy area of research

From Kuhn et al., 70% of failures can be detected by 2-way 
interactions of the software system’s parameters

Covering arrays can save testing time while still detecting many 
important software faults



Combinatorial Testing
5

Modern software systems are highly configurable and involve 
many interacting parameters

Combinatorial testing is a widely used and practical technique 
for detecting failures caused by the parameter interactions

One of the key challenges in combinatorial testing is covering 
array generation, which is an noteworthy area of research

From Kuhn et al., 70% of failures can be detected by 2-way 
interactions of the software system’s parameters

Covering arrays can save testing time while still detecting many 
important software faults



Combinatorial Testing
6

Modern software systems are highly configurable and involve 
many interacting parameters

Combinatorial testing is a widely used and practical technique 
for detecting failures caused by the parameter interactions

One of the key challenges in combinatorial testing is covering 
array generation, which is an noteworthy area of research

From Kuhn et al., 70% of failures can be detected by 2-way 
interactions of the software system’s parameters

Covering arrays can save testing time while still detecting many 
important software faults



2-way Covering Arrays
7

Suppose there are 4 parameters (pa1, pa2, 
pa3, and pa4) in a system under test (SUT), 
each with 3 values (0, 1, 2)

If we want to cover all 54 pair-wise 
interactions between every 2 parameters in 
the SUT, then only 9 test cases are needed

What is the most efficient and effective 
method for generating covering arrays?



2-way Covering Arrays
8

Suppose there are 4 parameters (pa1, pa2, 
pa3, and pa4) in a system under test (SUT), 
each with 3 values (0, 1, 2)

If we want to cover all 54 pair-wise 
interactions between every 2 parameters in 
the SUT, then only 9 test cases are needed

What is the most efficient and effective 
method for generating covering arrays?



Covering Array Generation
9

• OFOT: One Factor One Time Method

• AETG: Automatic Efficient Tests Generator

Mathematical and Greedy Methods

• Particle swarm optimization

• Simulated annealing

• Ant colony optimization

Evolutionary Search Techniques



Covering Array Generation
10

• OFOT: One Factor One Time Method

• AETG: Automatic Efficient Tests Generator

Mathematical and Greedy Methods

• Particle swarm optimization

• Simulated annealing

• Ant colony optimization

Evolutionary Search Techniques



Covering Array Generation
11

• OFOT: One Factor One Time Method

• AETG: Automatic Efficient Tests Generator

Mathematical and Greedy Methods

• Particle swarm optimization

• Simulated annealing

• Ant colony optimization

Evolutionary Search Techniques

This paper studies and improves genetic 

algorithms for covering array generation



Genetic Algorithm Phases
12

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

Genetic algorithms solve complex problems



Genetic Algorithm Phases
13

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

Genetic algorithms are hard to configure



Genetic Algorithm Parameters
14

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

System under test (SUT) description (e.g., 313)



Genetic Algorithm Parameters
15

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

Number of uncovered pair-wise interactions



Genetic Algorithm Parameters
16

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

Pc controls the probability of crossover



Genetic Algorithm Parameters
17

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

If Pc is too high, then break good individuals



Genetic Algorithm Parameters
18

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

If Pc is too low, then miss good solutions



Genetic Algorithm Parameters
19

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

Pm controls the probability of mutation



Genetic Algorithm Parameters
20

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

If Pm is too small, then cannot escape minima



Genetic Algorithm Parameters
21

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

If Pm is too large, then degrade into random



Genetic Algorithm Parameters
22

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

Standard GA: Select the superior individuals



Genetic Algorithm Parameters
23

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

GA-: Select the inferior individuals



Genetic Algorithm Parameters
24

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

GAr: Randomly select the individuals



Genetic Algorithm Parameters
25

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

GA climb: Use elitism to keep best individual



Genetic Algorithm Parameters
26

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

GA, GA-, GAr, GA climb, GA- climb, GAr climb 



Experimental Design
27

Population Size

Number of 
Generations

Crossover 
Probability

Mutation 
Probability



Experimental Design
28

• 100, 2100, 

• 4100, 6100Population Size

Number of 
Generations

Crossover 
Probability

Mutation 
Probability



Experimental Design
29

Population Size

• 100, 600, 1100Number of 
Generations

Crossover 
Probability

Mutation 
Probability



Experimental Design
30

Population Size

Number of 
Generations

• 0.2, 0.4, 0.6, 0.8, 1.0Crossover 
Probability

Mutation 
Probability



Experimental Design
31

Population Size

Number of 
Generations

Crossover 
Probability

• 0.2, 0.4, 0.6, 0.8, 1.0Mutation 
Probability



Experimental Design
32

Experiment 
Classes

Pair-wise

Base 
choice

Hill 
climbing

Is there an improved configuration of genetic 

algorithm for a particular pair-wise SUT? 



Experimental Design
33

Experiment 
Classes

Pair-wise

Base 
choice

Hill 
climbing

Is there a common improved configuration 

for all pair-wise SUTs?



Experimental Design
34

Experiment 
Classes

Pair-wise

Base 
choice

Hill 
climbing

Produce a 2-way covering array with 34 

configurations and input into the next phases



Experimental Design
35

Experiment 
Classes

Pair-wise

Base 
choice

Hill 
climbing

Create configurations by changing the value 

of one parameter and not modifying others



Experimental Design
36

Experiment 
Classes

Pair-wise

Base 
choice

Hill 
climbing

Iteratively refine the configurations in order 

to find the best one for each SUT 



37

For the chosen SUTs, there is no single genetic 

algorithm configuration that is the best 

Experimental Results



38

Different values for the effectiveness of the 

genetic algorithm (e.g., CA size)

Experimental Results



39

Different values for the efficiency of the 

genetic algorithm (e.g., run time)

Experimental Results



40

The VGAs of all the improved configurations 

all use a climbing genetic algorithm

Experimental Results



41

GA- and GAr yield the best configuration 

for CA generation in 10 out of 15 SUTs

Experimental Results



42

For all SUTs, a lengthier evolutionary process 

improves CA generation

Experimental Results



43

In 13 out of 15 SUTS, creating fewer 

mutated individuals leads to better CAs

Experimental Results



44

There is no common best value of Pc or m for 

the chosen SUTs

Experimental Results



45

Please see the paper for additional insights 

concerning the experimental results

Experimental Results



Conclusions
46

Initialize

• Accept input 
parameters

• Generate 
population

Fitness

• Higher is 
better

• Pair-wise 
interactions

Crossover

• Create new 
individuals

• Combine two 
parents

Mutation

• Modify 
individuals

• Increase 
diversity

Selection

• Choose 
individuals

• Many 
variants

1 2 3 4 5

Genetic algorithms for covering array generation



Conclusions
47

Systematic study on the impact of GA parameters

Experiment 
Classes

Pair-wise

Base 
choice

Hill 
climbing



Conclusions
48

Fundamental insights into the genetic algorithm 

Counter-
intuitive 
selection 
strategies

Elitist 
selection 
methods

Efficient and 
effective 
genetic 

algorithm for 
covering array 

generation 



Conclusions
49

Fundamental insights into the genetic algorithm 

Counter-
intuitive 
selection 
strategies

Elitist 
selection 
methods

Efficient and 
effective 
genetic 

algorithm for 
covering array 

generation 



Conclusions
50

Fundamental insights into the genetic algorithm 

Counter-
intuitive 
selection 
strategies

Elitist 
selection 
methods

Efficient and 
effective 
genetic 

algorithm for 
covering array 

generation 



Conclusions
51

Fundamental insights into the genetic algorithm 

Counter-
intuitive 
selection 
strategies

Elitist 
selection 
methods

Efficient and 
effective 
genetic 

algorithm for 
covering array 

generation 



Conclusions
52

Fundamental insights into the genetic algorithm 

Counter-
intuitive 
selection 
strategies

Elitist 
selection 
methods

Efficient and 
effective 
genetic 

algorithm for 
covering array 

generation 



Future Work
53

Improved Understanding of Parameters

Parallel 
Computing

Discrete 
Parameters

Continuous 
Parameters



Future Work
54

Improved Understanding of Parameters

Parallel 
Computing

Discrete 
Parameters

Continuous 
Parameters



Future Work
55

Improved Understanding of Parameters

Parallel 
Computing

Discrete 
Parameters

Continuous 
Parameters



Future Work
56

Improved Understanding of Parameters

Parallel 
Computing

Discrete 
Parameters

Continuous 
Parameters



Future Work
57

Efficient and Effective Genetic Algorithms 

Parallel 
Computing

Discrete 
Parameters

Continuous 
Parameters



Future Work
58

Enhanced Covering Array Generators

Parallel 
Computing

Discrete 
Parameters

Continuous 
Parameters



Future Work
59

Better Tested and Higher Quality Software

Parallel 
Computing

Discrete 
Parameters

Continuous 
Parameters



Thank you for your attention!

60

EMPIRICALLY IDENTIFYING THE

BEST GENETIC ALGORITHM

FOR COVERING ARRAY GENERATION

Liang Yalan, Changhai Nie, Jonathan M. Kauffman, 

Gregory M. Kapfhammer, Hareton Leung

QUESTIONS OR COMMENTS?

3rd International Symposium on Search Based Software Engineering

Szeged, Hungary

September 10-12, 2011


