An Empirical Study of Incorporating Cost into Test Suite Reduction and Prioritization

[‡]Adam M. Smith and [†] Gregory M. Kapfhammer

[‡] Department of Computer Science University of Pittsburgh [†] Department of Computer Science Allegheny College

ACM Symposium on Applied Computing

March 8 - 12, 2009

Featuring an image from www.campusbicycle.com

2/20

Important Contributions

Implement and empirically evaluate the efficiency and effectiveness of cost-aware greedy methods for regression test suite reduction and prioritization

Important Contributions

Implement and empirically evaluate the efficiency and effectiveness of cost-aware greedy methods for regression test suite reduction and prioritization

2/20

Important Contributions

Implement and empirically evaluate the efficiency and effectiveness of cost-aware greedy methods for regression test suite reduction and prioritization

2/20

Important Contributions

Implement and empirically **evaluate** the efficiency and effectiveness of **cost-aware** greedy methods for regression test suite **reduction** and **prioritization**

Regression Testing and Bicycles

Efficiency: Low wind resistance and time to destination

Regression Testing and Bicycles

Effectiveness: Transports all required materials and no break downs

Regression Testing and Bicycles

Cost: Frame material and components cause price to vary considerably

Regression Testing Techniques

It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Reduction** discards some of the *n* tests in an attempt to **decrease** testing time while still **preserving** objectives like **coverage** or **fault detection**.

Regression Testing Techniques

It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Reduction** discards some of the *n* tests in an attempt to **decrease** testing time while still **preserving** objectives like **coverage** or **fault detection**.

Regression Testing Techniques

It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Reduction** discards some of the *n* tests in an attempt to **decrease** testing time while still **preserving** objectives like **coverage** or **fault detection**.

Regression Testing Techniques

It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Reduction** discards some of the *n* tests in an attempt to **decrease** testing time while still **preserving** objectives like **coverage** or **fault detection**.

Regression Testing Techniques

It is **expensive** to run a test suite $T = \langle T_1, ..., T_n \rangle$. **Prioritization** searches through the $n! = n \times n - 1 \times ... \times 1$ orderings for those that **maximize** an objective function like **coverage** or **fault detection**.

• $R_j \rightarrow T_i$ means that requirement R_j is **covered by** test T_i

 Test suite reduction discards the test cases that redundantly cover the test requirements

• $T = \langle T_2, T_3, T_6, T_9 \rangle$ covers all of the test requirements

- $R_j \rightarrow T_i$ means that requirement R_j is **covered by** test T_i
- Test suite reduction discards the test cases that redundantly cover the test requirements

• $T = \langle T_2, T_3, T_6, T_9 \rangle$ covers all of the test requirements

- $R_j \rightarrow T_i$ means that requirement R_j is **covered by** test T_i
- Test suite reduction discards the test cases that redundantly cover the test requirements
- $T = \langle T_2, T_3, T_6, T_9 \rangle$ covers **all** of the test requirements

ts

Γ₄ Γ₃

 T_2

 T_1

Γ₄ Γ₁ Γ₃

 T_2

Г3

 T_2

Greedy Approaches to Regression Testing

- Harrold, Gupta, Soffa (HGS)
- Delayed Greedy (DGR)
- Traditional Greedy (GRD)
- 2-Optimal Greedy (2OPT)

Hypothesis: Using the execution **time** of a test case can **improve** the reduced and prioritized test suites

Compare (i) greedy choices (cost, coverage, and ratio) and (ii) algorithms

(Regression Testing)

Greedy Approaches to Regression Testing

- Harrold, Gupta, Soffa (HGS)
- Delayed Greedy (DGR)
- Traditional Greedy (GRD)
- 2-Optimal Greedy (2OPT)

Hypothesis: Using the execution **time** of a test case can **improve** the reduced and prioritized test suites

Compare (i) greedy choices (cost, coverage, and ratio) and (ii) algorithms

(Regression Testing)

Greedy Approaches to Regression Testing

- Harrold, Gupta, Soffa (HGS)
- Delayed Greedy (DGR)
- Traditional Greedy (GRD)
- 2-Optimal Greedy (2OPT)

Hypothesis: Using the execution **time** of a test case can **improve** the reduced and prioritized test suites

Compare (i) greedy choices (cost, coverage, and ratio) and (ii) algorithms

(Regression Testing)

Greedy Approaches to Regression Testing

- Harrold, Gupta, Soffa (HGS)
- Delayed Greedy (DGR)
- Traditional Greedy (GRD)
- 2-Optimal Greedy (2OPT)

Hypothesis: Using the execution time of a test case can improve the reduced and prioritized test suites

Compare (i) greedy choices (cost, coverage, and ratio) and (ii) algorithms

7/20

Evaluating Test Suite Prioritizers

• Prioritize to **increase** the CE of a test suite $CE = \frac{Actual}{Ideal} \in [0, 1]$

Evaluating Test Suite Prioritizers

• Prioritize to **increase** the CE of a test suite $CE = \frac{Actual}{Ideal} \in [0, 1]$

Evaluating Test Suite Reducers

Reduction Factor for Size (RFFS): How small is the reduced test suite?

Evaluating Test Suite Reducers

Reduction Factor for Time (RFFT): How fast is the reduced test suite?

	R_1	R_2	R_3	R_4	R_5	Execution Time
<i>T</i> ₁	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
T_4	\checkmark				\checkmark	1

Greedy-by	T_r	$time(T_r)$	T_p	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743

	R_1	R_2	R_3	R_4	R_5	Execution Time
<i>T</i> ₁	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
T_4	\checkmark				\checkmark	1

Greedy-by	T_r	$time(T_r)$	$T_{ ho}$	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743

	R_1	R_2	R_3	R_4	R_5	Execution Time
<i>T</i> ₁	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
<i>T</i> ₄	\checkmark				\checkmark	1

Greedy-by	T_r	$time(T_r)$	T_{ρ}	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743

	R_1	R_2	R_3	R_4	R_5	Execution Time
<i>T</i> ₁	\checkmark	\checkmark	\checkmark	\checkmark		4
<i>T</i> ₂			\checkmark	\checkmark		1
<i>T</i> ₃		\checkmark				1
T_4	\checkmark				\checkmark	1

Greedy-by	T _r	$time(T_r)$	T_{ρ}	CE
coverage	$\langle T_1, T_4 \rangle$	5	$\langle T_1, T_4, T_2, T_3 \rangle$	0.400
time	$\langle T_2, T_3, T_4 \rangle$	3	$\langle T_2, T_3, T_4, T_1 \rangle$	0.714
ratio	$\langle T_2, T_4, T_3 \rangle$	3	$\langle T_2, T_4, T_3, T_1 \rangle$	0.743

Case Study Applications

Name	<i>T</i>	$ \mathcal{R}(T) $	CCN	NCSS
DS	110	40	1.35	1243.00
GB	51	88	2.60	1455.00
JD	54	783	1.64	2716.00
LF	13	6	1.40	215.00
RM	13	19	2.13	569.00
SK	27	117	2.00	628.00
TM	27	46	2.21	748.00
RP	76	221	2.65	6822.00

Case Study Applications

Name	<i>T</i>	$ \mathcal{R}(T) $	CCN	NCSS
DS	110	40	1.35	1243.00
GB	51	88	2.60	1455.00
JD	54	783	1.64	2716.00
LF	13	6	1.40	215.00
RM	13	19	2.13	569.00
SK	27	117	2.00	628.00
TM	27	46	2.21	748.00
RP	76	221	2.65	6822.00

Case Study Applications

Name	<i>T</i>	$ \mathcal{R}(T) $	CCN	NCSS
DS	110	40	1.35	1243.00
GB	51	88	2.60	1455.00
JD	54	783	1.64	2716.00
LF	13	6	1.40	215.00
RM	13	19	2.13	569.00
SK	27	117	2.00	628.00
TM	27	46	2.21	748.00
RP	76	221	2.65	6822.00

Case Study Applications

Name	<i>T</i>	$ \mathcal{R}(T) $	CCN	NCSS
DS	110	40	1.35	1243.00
GB	51	88	2.60	1455.00
JD	54	783	1.64	2716.00
LF	13	6	1.40	215.00
RM	13	19	2.13	569.00
SK	27	117	2.00	628.00
TM	27	46	2.21	748.00
RP	76	221	2.65	6822.00

Questions: Do the **greedy** reducers and prioritizers efficiently identify test suites that **improve** effectiveness? What are the fundamental **trade-offs**?

Overview of RFFT Trends

The myopic focus on cost leads to low RFFT values for 2OPT and GRD

Overview of RFFT Trends

The myopic focus on **cost** leads to **low** RFFT values for 2OPT and GRD

Overview of RFFS Trends

DGR and HGS are the best at creating test suites that improve RFFS

An Empirical Study of Incorporating Cost into Test Suite Reduction and Prioritization

12/20

Overview of RFFS Trends

DGR and HGS are the best at creating test suites that improve RFFS

An Empirical Study of Incorporating Cost into Test Suite Reduction and Prioritization

12/20
Overview of CE Trends

Using ratio and cost improves the CE of the prioritized test suite

Overview of CE Trends

Using ratio and cost improves the CE of the prioritized test suite

An Empirical Study of Incorporating Cost into Test Suite Reduction and Prioritization

13/20

Reduction Factor for Time - SK

For 2OPT and GRD, ratio and coverage create the best test suites

Reduction Factor for Time - SK

For 2OPT and GRD, ratio and coverage create the best test suites

Reduction Factor for Size - SK

It is often easy to construct test suites with high RFFS values

Reduction Factor for Size - SK

It is often easy to construct test suites with high RFFS values

Coverage Effectiveness Results - RP

DGR and HGS exhibit lackluster performance when reordering

Coverage Effectiveness Results - RP

DGR and HGS exhibit lackluster performance when reordering

Efficiency Measurements

For the chosen case study applications, the techniques are efficient

Efficiency Measurements

For the chosen case study applications, the techniques are efficient

Alternative Evaluation Metrics Like APFD

Use **mutation** and **real** faults to support the calculation of fault detection effectiveness (**FDE**) and average percentage of faults detected (**APFD**). Consider **search-based** testing methods.

RAISE - Reduce And prlortize SuitEs

Google raise Reduce And prioritize SuitEs							Search Project	
Project Home	Downloads	Wiki	Issues	Source	Administ	er		
Summary Upd	ates							
Software developers use testing to raise confidence in the correctness of a software system. Automated reduction					🗇 Star this project			
and prioritization to				Co	de License:	Eclipse Public	License 1.0	
required to detect faults during test suite execution. This package uses the Harrold Gupta Soffa, delayed greedy, traditional greedy, and 2-optimal greedy algorithms for both test suite reduction and prioritization. Even though				Labels:		Regression, Reduction,		
						Prioritization, Software, Suite,		
						JUnit, Test, Testing		
educing and reor								
ensure that testing is cost-effective, these algorithms are				Fe	Feeds: Project Feeds			
ormally configure	d to make greedy	choices w	ith					
coverage information alone. This paper extends these				Pro	Project owners:			
Igorithms to gree					Adan	nMatthewSmith, g	kapfham	
ising both test cos code coverage to f	st (e.g. execution	ume)and in	e ratio of					

http://raise.googlecode.com/ provides tools, data sets, and resources

Concluding Remarks

- Implementation and empirical evaluation of methods for test suite reduction and prioritization
- Freely available data sets and free/open source tools

http://www.cs.allegheny.edu/~gkapfham/research/kanonizo/

