
Surveying the Developer Experience of Flaky Tests

Owain Parry¹, Gregory M. Kapfhammer², Michael Hilton³, Phil McMinn¹

¹University of Sheffield, UK
²Allegheny College, USA

³Carnegie Mellon University, USA

What is a flaky test?

● A flaky test is a test case that can pass
and fail without changes to the code
under test.

● Flaky tests reduce developer
productivity and lead to a loss of
confidence in testing.

Image courtesy of Brian Graham
https://statagroup.com/articles/flaky-tests

What has been done about flaky tests?

● The past decade has seen an increasing volume of empirical studies on flaky tests
[Luo et. al. 2014], [Throve et. al. 2018], [Romano et. al. 2021].

● But there is less focus on the views and experiences of software developers.

● Where previous such studies exist, they focus on specific organizations or
self-reported experiences [Hilton et. al. 2017], [Eck et. al. 2019].

What did we do?

● We set out to learn how developers define and react to flaky tests and to understand
developers’ experiences of their impacts and causes.

● We deployed a survey on social media and received 170 responses.

● We also analyzed 38 StackOverflow threads about flaky tests.

Our research questions

● RQ1: How do developers define flaky tests?

● RQ2: What impacts do flaky tests have on developers?

● RQ3: What causes the flaky tests experienced by developers?

● RQ4: What actions do developers take against flaky tests?

RQ1: Define

Our methodology

● We reviewed published papers and grey literature to design a survey of 11 open-
and closed-ended questions.

● We collected a dataset of StackOverflow threads where a developer asked for
help addressing one or more flaky tests and accepted an answer.

● We performed numerical analysis on the closed-ended survey questions and
thematic analysis on the open-ended questions and the StackOverflow threads.

1

a

RQ2: Impacts

1 1a

RQ4: Actions

a1 a

RQ3: Causes

a1 a

A little bit about our survey respondents

A little bit about our survey respondents

A little bit about our survey respondents

RQ1: How do developers define flaky tests?
1

RQ1: How do developers define flaky tests?

● Beyond code: The definition extends beyond the test case code and the code that it
covers. “... a flaky test is any test that changes from pass to fail (or vice versa) in
different environments” - P97.

● Flaky code under test: A flaky test can indicate that the code under test is flawed,
rather than the test case itself. “... a flaky test is therefore either unreliable itself or it
proves the code under test is flawed and unreliable” - P155.

● Beyond test outcomes: A test case can be considered flaky despite having a
consistent outcome. “... this includes pass/fail, but can encompass other aspects such
as coverage or test time” - P58.

a

RQ2: What impacts do flaky tests have on developers?
To what extent do you agree with the following statements…
(Strongly disagree: 0, Disagree: 1, Agree: 2, Strongly agree: 3) Score Rank

Flaky tests reduce the reliability of testing. 2.45 4

Flaky tests reduce the efficiency of testing. 2.47 3

Flaky tests lead to a loss of productivity. 2.50 2

Flaky tests lead to a loss of confidence in testing. 2.21 5

Flaky tests hinder continuous integration (CI). 2.63 1

Flaky tests make it more likely for you to ignore (potentially genuine) test failures. 2.16 6

It is difficult to reproduce a flaky test failure. 2.09 7

It is difficult to differentiate between a test failure due to a genuine bug and a test failure due to flakiness. 1.76 8

1

RQ3: What causes the flaky tests experienced by developers?
In the projects you’re currently working on, how often have you encountered flaky tests caused by…
(Never: 0, Rarely: 1, Sometimes: 2, Often: 3) Score Rank

Not correctly waiting for the results of asynchronous calls to become available. 1.30 4

Synchronization issues between multiple threads interacting in an unsafe or unanticipated manner. 1.12 5

Tests not properly cleaning up after themselves or failing to set up their necessary preconditions. 1.69 1

Improper management of resources (e.g., not closing a file or not deallocating memory). 0.89 7

Dependency on a network connection. 1.44 2

Not accounting for all the possible outcomes of random data generators or code that uses them. 0.69 9

Reliance on the local system time/date. 1.06 6

Inaccuracies when performing floating point operations. 0.48 10

Assuming a particular iteration order for an unordered collection-type object (e.g., sets). 0.73 8

Reasons that cannot be precisely determined. 1.32 3

1

RQ3: What causes the flaky tests experienced by developers?

● External artifact: An issue in an external service, library, or other artifact, that is
outside the scope and control of the software under test. “Third-party artifacts,
services, or dependencies … which you do not have full control of.” - P8.

● Environmental differences: Environmental differences between local development
machines and remote build machines. “Environmental differences in local vs CI like
different JVM defaults.” - P21.

● Host system issues: Problems regarding the machines running the test suites.
“Changes in hardware that the code and tests are running on.” - P155.

a

RQ3: What causes the flaky tests experienced by developers?

● UI timing: Test case does not wait for a user interface to be in the correct state.

● Logic error: Error in the logic of the test code or the code under test.

● Shared state: Test case depends on state shared with other test cases.

https://stackoverflow.com/questions/67375506

a

RQ4: What actions do developers take against flaky tests?
After identifying a flaky test, how often do you…
(Never: 0, Rarely: 1, Sometimes: 2, Often: 3) Score Rank

Take no action. 1.19 4

Re-run the build. 2.67 1

Document and defer (e.g., submit an issue/bug report). 1.62 3

Delete the test. 0.94 5

Quarantine the test. 0.77 8

Mark the test to be skipped or as an expected failure (e.g., xfail). 0.93 6

Mark the test to be automatically repeated (e.g., by using the flaky plugin for pytest). 0.79 7

Attempt to repair the flakiness. 2.41 2

1

RQ4: What actions do developers take against flaky tests?

● Emotive response: An expression of anger or some other emotion. “Get very angry.”
- P34.

● Alert proper person: Inform other member or members of the development team
about the flaky test. “Tell the person who maintains that codebase.” - P52.

● Reorder tests: Adjust the order of the test cases. “Reorder tests in case they are
order-dependent.” - P111.

a

RQ4: What actions do developers take against flaky tests?

● Fix logic: Repair a logic error.

● Wait for condition: Add an explicit wait for a condition.

● Add mock: Mock out an object or method.

https://stackoverflow.com/questions/48027118

a

Anything else you’d like to tell us?

● Developer culture: The relationship between flaky tests and testing practices and
developer culture. “It’s often and organizational problem …” - P89.

● Emotive response: An expression of anger or other emotion. “They suck.” - P91.

● Poor tooling support: Tooling for handling flaky tests is inadequate or not well
known. “Library support for automatically handling them in Scala is poor or not well
popularized.” - P7.

Recommendations

● Consider beyond code: The definition of a flaky test should include factors beyond
the test case code or the code under test, such as properties of the execution
environment.

● Not completely useless: Flaky tests may indicate a flaw in the code under test or
another aspect of the software system. Therefore, developers should not write them
off as completely useless.

● Impact on CI: Flaky tests can become an obstacle to the effective deployment of CI.
Researchers should consider the creation and evaluation of new approaches to better
mitigate this trend.

Recommendations

● Careful setup/teardown: Insufficient setup and teardown is a common cause of flaky
tests. Developers should exercise particular care when writing setup and teardown
methods for their test suites.

● Identify root causes: It is difficult to manually determine the root cause of many
flaky tests. Researchers should continue to develop automated techniques for this
challenging task.

● Repair promptly: Developers should to repair flaky tests as soon as possible after
identifying them to avoid them accumulating and potentially being ignored.

