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Introduction
• Regression testing

• Regression testing is used to validate the modified 
software product.

• Software engineers often reuse test suites in 
regression testing.
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Test case prioritization
• Software developers can start to remove faults 
early if faults can be detected in early stage of 
testing.

• Scheduling the test cases in an order so that the 
tests with better fault detection capability are 
executed at an early position in the regression 
test suite.
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Example for test case prioritization
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Example for test case prioritization
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T1 T2 T3 T4 T5 T7T6
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Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost 
(APFDc)

• fi: fault severity of fault i
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Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost 
(APFDc)

• fi: fault severity of fault i
• tj: execution cost of test case j
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Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost 
(APFDc)

• fi: fault severity of fault i
• tj: execution cost of test case j
• n: the number of test cases in the test suite
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Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost 
(APFDc)

• fi: fault severity of fault i
• tj: execution cost of test case j
• n: the number of test cases in the test suite
• m: the number of faults that are revealed by the test suite
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Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost 
(APFDc)

• fi: fault severity of fault i
• tj: execution cost of test case j
• n: the number of test cases in the test suite
• m: the number of faults that are revealed by the test suite
• TFi:  the first test case in an ordering test suite that 

reveals fault i
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Criterion used to evaluate prioritization
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Test case A B C D E
Detecting faults or not   

Order: A-B-C-D-E

Test suite fraction

Detected fault(%)



Criterion used to evaluate prioritization
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Test case A B C D E
Detecting faults or not   

Order: A-D-E-B-C

Test suite fraction

Detected fault(%)



Historical information
• Software developer benefits from the historical 
data.
• Historical fault data: fault detections of a specific 

test case in the previous versions

13

Test suite Version 00 
(Original) Version 01 Version 02 Version 03

A  

B   
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History-based test case prioritization
• Previous test results can provide useful 
information to make future testing more 
efficient.

• Kim and Porter proposed a history-based test 
case prioritization.
• They prioritize test cases using historical test 

execution data.
• Liu et al. prioritize test cases based on 
information concerning historical faults and the 
source code.
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Motivation
• The previous approaches assumed that the 
immediately preceding test result provides the 
same reference value for prioritizing the test 
cases of the successive software version.

• Open research question: is the reference value 
of the test result of the immediately preceding 
version of the software version-aware for the 
successive test case prioritization?
• This research presents a test case prioritization 

approach based on our observations.
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Subject programs
• Siemens programs

• From Software-artifact Infrastructure Repository (SIR)
• Benchmarks that are frequently used to compare different test 

case prioritization methods
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Programs Test pool size # of branches # of versions
printtokens 4,130 140 7
printtokens2 4,115 138 10

replace 5,542 126 32
schedule 2,650 46 9
schedule2 2,710 72 10

tcas 1,608 16 41
totinfo 1,052 44 23



Analysis 1: Fault-prone test cases
• We found that, for the test cases detecting faults 
in a specific version, there is a higher probability 
that they will detect faults again in the 
successive version.
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Analysis 1- Fault-prone test cases (Cont.)

Subject 
Programs

If a test case failed in a 
specific version

If a test case passed in a 
specific version

Prob. that it fails in the next version
printtokens 6.78% 2.05%
printtokens2 22.25% 3.95%

replace 7.39% 1.78%
schedule 3.79% 1.68%
schedule2 7.55% 0.81%

tcas 5.61% 2.78%
totinfo 21.30% 5.96%
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Analysis 2: Repeated fault detection

• Prob. that a test case detects faults in two successive 
software versions as the programs evolve.
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Analysis 2: Repeated fault detection (Cont.)
• The linear regression plot indicates that the 
probability tends to decrease as the programs 
evolve.
• A test case detects faults in two successive versions 

may get less and less significant.
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Assumptions of presented method
1. Both historical fault data and source code 

information are valuable for prioritizing test 
cases in the later software versions;

2. The priorities of the test cases that detected 
faults in the immediately preceding version 
should be increased;

3. The increment described in Assumption 2 is 
software-version-aware and will linearly 
decrease as the programs evolve.
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Presented method

• Pk: the priority of the test case in the k-th version
• hk: the historical information that indicates whether 

the test case detected a fault in the (k-1)-th version
• Cnum: the number of branches covered by the test case
• Vers: the number of versions of the subject program
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Methods compared in the empirical study
• Kim and Porter’s history-based test case 
prioritization [Kim and Porter, ICSE 2002]

• Liu et al.’s history-based test case prioritization 
[Liu et al., Internetware 2011]

• Random prioritization
• Presented method
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Preliminary experimental analyses

Programs Kim & Porter’s Liu et al.’s Random Presented 
printtokens 54.86% 70.12% 49.52% 70.11%
printtokens2 79.25% 72.65% 50.68% 81.95%

replace 72.62% 68.18% 49.42% 76.33%
schedule 67.41% 56.13% 49.94% 63.27%
schedule2 58.25% 51.05% 48.70% 60.27%

tcas 66.52% 60.31% 50.23% 74.13%
totinfo 69.83% 72.32% 48.96% 74.46%

Average 66.96% 64.39% 49.64% 71.50%
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• The presented approach normally provides the 
best fault detection rates.



Conclusion and future work
• This paper presented a software-version-aware 
approach that considers both source code 
information and historical fault data.

• The presented approach provides better fault 
detection rates than the established methods.

• We intend to 
• use a full-featured model to adjust the software-

version-aware test case priority more accurately.
• conduct more experiments with case study 

applications that have more source code and tests.
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