
History-based Test Case
Prioritization with Software

Version Awareness
Chu-Ti Lin, National Chiayi University, Taiwan

Cheng-Ding Chen, Industrial Technology Research Institute, Taiwan
Chang-Shi Tsai, National Chiayi University, Taiwan
Gregory M. Kapfhammer, Allegheny College, USA

June 18, 2013

The 18th International Conference on Engineering of Complex Computer Systems

1

Introduction
• Regression testing

• Regression testing is used to validate the modified
software product.

• Software engineers often reuse test suites in
regression testing.

2

Start EndTest Suite Test Suite
Execution

Test
Result

Programs

Modifying or upgrading the software product

Test case prioritization
• Software developers can start to remove faults
early if faults can be detected in early stage of
testing.

• Scheduling the test cases in an order so that the
tests with better fault detection capability are
executed at an early position in the regression
test suite.

3

Example for test case prioritization

4

T1 T2 T3 T4 T5 T7T6

Example for test case prioritization

5

T1 T2 T3 T4 T5 T7T6

T2 T4 T7 T1 T3 T6T5

Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost
(APFDc)

• fi: fault severity of fault i

6

 m

i
i

n

j
j

m

i

n

TFj
TFji

ft

ttf
APFDc i

i

11

1 2
1

Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost
(APFDc)

• fi: fault severity of fault i
• tj: execution cost of test case j

7

 m

i
i

n

j
j

m

i

n

TFj
TFji

ft

ttf
APFDc i

i

11

1 2
1

Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost
(APFDc)

• fi: fault severity of fault i
• tj: execution cost of test case j
• n: the number of test cases in the test suite

8

 m

i
i

n

j
j

m

i

n

TFj
TFji

ft

ttf
APFDc i

i

11

1 2
1

Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost
(APFDc)

• fi: fault severity of fault i
• tj: execution cost of test case j
• n: the number of test cases in the test suite
• m: the number of faults that are revealed by the test suite

9

 m

i
i

n

j
j

m

i

n

TFj
TFji

ft

ttf
APFDc i

i

11

1 2
1

Criterion used to evaluate prioritization
• Average Percentage of Fault Detected per Cost
(APFDc)

• fi: fault severity of fault i
• tj: execution cost of test case j
• n: the number of test cases in the test suite
• m: the number of faults that are revealed by the test suite
• TFi: the first test case in an ordering test suite that

reveals fault i

10

 m

i
i

n

j
j

m

i

n

TFj
TFji

ft

ttf
APFDc i

i

11

1 2
1

Criterion used to evaluate prioritization

11

Test case A B C D E
Detecting faults or not

Order: A-B-C-D-E

Test suite fraction

Detected fault(%)

Criterion used to evaluate prioritization

12

Test case A B C D E
Detecting faults or not

Order: A-D-E-B-C

Test suite fraction

Detected fault(%)

Historical information
• Software developer benefits from the historical
data.
• Historical fault data: fault detections of a specific

test case in the previous versions

13

Test suite Version 00
(Original) Version 01 Version 02 Version 03

A

B

C

D

E

History-based test case prioritization
• Previous test results can provide useful
information to make future testing more
efficient.

• Kim and Porter proposed a history-based test
case prioritization.
• They prioritize test cases using historical test

execution data.
• Liu et al. prioritize test cases based on
information concerning historical faults and the
source code.

14

Motivation
• The previous approaches assumed that the
immediately preceding test result provides the
same reference value for prioritizing the test
cases of the successive software version.

• Open research question: is the reference value
of the test result of the immediately preceding
version of the software version-aware for the
successive test case prioritization?
• This research presents a test case prioritization

approach based on our observations.

15

Subject programs
• Siemens programs

• From Software-artifact Infrastructure Repository (SIR)
• Benchmarks that are frequently used to compare different test

case prioritization methods

16

Programs Test pool size # of branches # of versions
printtokens 4,130 140 7
printtokens2 4,115 138 10

replace 5,542 126 32
schedule 2,650 46 9
schedule2 2,710 72 10

tcas 1,608 16 41
totinfo 1,052 44 23

Analysis 1: Fault-prone test cases
• We found that, for the test cases detecting faults
in a specific version, there is a higher probability
that they will detect faults again in the
successive version.

17

Analysis 1- Fault-prone test cases (Cont.)

Subject
Programs

If a test case failed in a
specific version

If a test case passed in a
specific version

Prob. that it fails in the next version
printtokens 6.78% 2.05%
printtokens2 22.25% 3.95%

replace 7.39% 1.78%
schedule 3.79% 1.68%
schedule2 7.55% 0.81%

tcas 5.61% 2.78%
totinfo 21.30% 5.96%

18

Analysis 2: Repeated fault detection

• Prob. that a test case detects faults in two successive
software versions as the programs evolve.

19

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21

Prob.
(%)

Software
Versions

Fitted linear regression model
xy 91.026.30

Analyzed programs
replace

tcas
totinfo

Analysis 2: Repeated fault detection (Cont.)
• The linear regression plot indicates that the
probability tends to decrease as the programs
evolve.
• A test case detects faults in two successive versions

may get less and less significant.

20

Assumptions of presented method
1. Both historical fault data and source code

information are valuable for prioritizing test
cases in the later software versions;

2. The priorities of the test cases that detected
faults in the immediately preceding version
should be increased;

3. The increment described in Assumption 2 is
software-version-aware and will linearly
decrease as the programs evolve.

21

Presented method

• Pk: the priority of the test case in the k-th version
• hk: the historical information that indicates whether

the test case detected a fault in the (k-1)-th version
• Cnum: the number of branches covered by the test case
• Vers: the number of versions of the subject program

22

 ,0 if ,]/)[(

,0 if,

1 kVerskVersChP
kC

P
numkk

num
k

Methods compared in the empirical study
• Kim and Porter’s history-based test case
prioritization [Kim and Porter, ICSE 2002]

• Liu et al.’s history-based test case prioritization
[Liu et al., Internetware 2011]

• Random prioritization
• Presented method

23

Preliminary experimental analyses

Programs Kim & Porter’s Liu et al.’s Random Presented
printtokens 54.86% 70.12% 49.52% 70.11%
printtokens2 79.25% 72.65% 50.68% 81.95%

replace 72.62% 68.18% 49.42% 76.33%
schedule 67.41% 56.13% 49.94% 63.27%
schedule2 58.25% 51.05% 48.70% 60.27%

tcas 66.52% 60.31% 50.23% 74.13%
totinfo 69.83% 72.32% 48.96% 74.46%

Average 66.96% 64.39% 49.64% 71.50%

24

• The presented approach normally provides the
best fault detection rates.

Conclusion and future work
• This paper presented a software-version-aware
approach that considers both source code
information and historical fault data.

• The presented approach provides better fault
detection rates than the established methods.

• We intend to
• use a full-featured model to adjust the software-

version-aware test case priority more accurately.
• conduct more experiments with case study

applications that have more source code and tests.

25

