
Chasten Your Python
Program: Configurable
Program Analysis and

Linting with XPath
Gregory M. Kapfhammer

July 26, 2025

PyOhio 2025

Access resources during the talk!
Scan the QR code to follow along

PyOhio 2025

http://localhost:5550/slides/chasten/qrcode.svg
http://localhost:5550/slides/chasten/qrcode.svg

What is chasten? Why did we build it?

• Configurable program analysis and linting with XPath expressions

▪ Avoid a unique performance anti-pattern?

▪ Confirm the use of a new coding style?

▪ Nervous about writing custom AST visitors?

▪ Need configuration and data storage of results?

PyOhio 2025

Chasten helps you automatically
detect patterns in Python programs
 Developers

• Project-specific checks

• Avoid code anti-patterns

• Facilitate code reviews

 Researchers

• Count code patterns

• Measure code quality

• Easily share results

 Students

• Explore different code style

• Avoid performance problems

• Confirm project criteria

 Educators

• Give early feedback on code style

• Enforce assignment requirements

• Support use on laptops and in CI

PyOhio 2025

Example: students and educators
using chasten for a Python project
• Students may struggle to write efficient and readable Python code

• Manual review by instructors is time-consuming and error-prone

• Regex is brittle and AST-based tools are hard to prototype

Project Goal: chasten enables scalable and structure-aware
feedback that effectively supports both instructors and students

Take a Step Back: Before diving into the implementation of chasten,
it’s worth surveying the landscape of linting and checking

Many Trade-Offs: Different tools with varying implementation,
features, performance, and extensibility! Which one(s) to pick?

PyOhio 2025

Building a source code analyzer! What
are the options and trade-offs?
Regular Expressions

• Easy to write and try out

• O�en brittle and confusing

Pylint and Flake8

• Extensible with plugins

• Must have AST knowledge

Ruff

• Fast and easy to use

• No extension mechanism

Treesitter and Ast-Grep

• Configurable with patterns

• Less support for tool building

 Wow, pyastgrep offers a novel way query a program’s AST! Is XPath
sufficient? Can this tool support all envisioned use cases? How?

PyOhio 2025

Wait, what is an abstract syntax tree?
Python Source Code

Abstract Syntax Tree

def calculate_sum(x, y):1
"""Add two numbers."""2
return x + y3

Module(1
 body=[2
 FunctionDef(3
 name='calculate_sum', 4
 args=..., 5
 body=[6
 Return(7
 value=BinOp(8
 left=Name(id='x', ...), 9
 op=Add(), 10
 right=Name(id='y', ...)))], 11
 ...)], 12
 ...)13

 Understanding the AST

• Tree representation of code

• Nodes are syntax elements

• Great for program analysis

• Independent of code style

 AST Analysis Challenges

• Complex structure for code

• Brittle regular expressions

• False positives and negatives

• Need easy way to query

• Avoid bespoke solutions

• Adopt XPath-like queries
PyOhio 2025

Scanning code with pyastgrep
Define a Python file with functions

def too_many_args(a, b, c, d, e, f):1
def another_function(x, y):2
def a_third_function(p, q, r, s, t, u, v):3

Find functions with more than 5 arguments

pyastgrep '//FunctionDef[count(args/args) > 5]' example.py1

Results from running the query with pyastgrep

example.py:1:1:def too_many_args(a, b, c, d, e, f):1
example.py:7:1:def a_third_function(p, q, r, s, t, u, v):2

PyOhio 2025

Make the connection by comparing
the pyastgrep and chasten tools
pyastgrep

• Interactive AST search tool

• Ad-hoc queries from the CLI

• Uses raw XPath expressions

• grep-like console output

chasten

• Built using pyastgrep’s API

• Runs checks from a YAML file

• Saves results in JSON, CSV, DB

• View results with datasette

Key Idea: chasten uses pyastgrep’s powerful search to build a
configurable, project-oriented linter. Developers, researchers, students,
and instructors can “chasten” Python projects and save the results!

PyOhio 2025

Use dhv to explore a Python AST!

PyOhio 2025

http://localhost:5550/slides/chasten/dhv.png
http://localhost:5550/slides/chasten/dhv.png

Quick recap of referenced projects

• : Python’s abstract syntax tree module

• : A popular static code analyzer for Python

• : An extensible wrapper around PyFlakes, pycodestyle, and McCabe

• : An extremely fast Python linter and code formatter, written in Rust

• : A parser generator tool and incremental parsing library

• : A CLI tool for searching and rewriting code with ASTs

• : A tool for searching Python code with XPath expressions

• : A comprehensive TUI for Python code exploration built with Textual

• : A SQL-based tool for exploring and publishing data to the web

Click these links to preview documentation for referenced tools!

Python ast module

Pylint

Flake8

Ruff

Tree-sitter

Ast-grep

Pyastgrep

Dhv

Datasette

Next Steps: Use case for Python project analysis with chasten
PyOhio 2025

https://docs.python.org/3/library/ast.html
https://pylint.org/
https://flake8.pycqa.org/en/latest/
https://docs.astral.sh/ruff/
https://tree-sitter.github.io/tree-sitter/
https://ast-grep.github.io/
https://pyastgrep.readthedocs.io/en/latest/
https://dhv.davep.dev/
https://datasette.io/
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://docs.python.org/3/library/ast.html
https://pylint.org/
https://flake8.pycqa.org/en/latest/
https://docs.astral.sh/ruff/
https://tree-sitter.github.io/tree-sitter/
https://ast-grep.github.io/
https://pyastgrep.readthedocs.io/en/latest/
https://dhv.davep.dev/
https://datasette.io/

Avoid time complexity of O(n²)
O(n) is acceptable1
seen = set()2
for item in items:3

if item in seen:4
return True5

 seen.add(item)6

O(n²) is not okay1
for i in range(len(items)):2

for j in range(len(items)):3
if i != j 4
and items[i] == items[j]:5

return True6

• Goal: Automatically scan the source code that students submit to
confirm that there are no inefficient looping constructs

• Challenge: Linters like Ruff and Pylint don’t have rules to detect
nested control structures that either are or are not acceptable

• Build: An extensible tool allowing instructors to scan for arbitrary
code patterns without detailed AST knowledge

PyOhio 2025

Chasten to the rescue!
• Uses XPath to search Python’s AST

• Rules written in simple YAML

• Structure-first, not just style

• Outputs to JSON, CSV, or SQLite

Result: Instructors define checks once and use Chasten to easily
apply them at scale across all student submissions

- name: "nested-loops"1
code: "PERF001"2
pattern: "//For[descendant::For]"3
description: "Detects doubly nested for-loops that are often O(n²)"4

PyOhio 2025

Let’s run chasten!
Install the Tool

pipx install chasten # Install Chasten in venv1
pipx list # Confirm installation2
chasten --help # View available commands3

Run Chasten
chasten analyze time-complexity-lab \1

--config chasten-configuration \2
--search-path time-complexity-lab \3
--save-directory time-complexity-results \4
--save5

• Save results to a JSON file and produce console output

• Configure the return code for different detection goals

PyOhio 2025

Results from running chasten
Nested loop analysis

Check ID Check Name File Matches

PERF001 nested-loops analyze.py 1

PERF001 nested-loops display.py 7

PERF001 nested-loops main.py 0

Check ID → A unique short rule code (e.g., PERF001)

Check Name → The rule name that matched (e.g., nested-loops)

File → The Python file that the tool scanned (e.g., analyze.py)

Matches → Number of times the pattern was detected in that file (e.g., 1 match)

PyOhio 2025

Exploring a bespoke AST visitor
import ast1
import json2
import os3
import sys4

5
class ForVisitor(ast.NodeVisitor):6

"""7
 An AST visitor that detects doubly-nested for loops.8
 """9

def __init__(self, filepath):10
self.filepath = filepath11
self.nested_for_loops = []12
self._for_depth = 013

14
def visit_For(self, node):15

"""16
 Visit a for-loop node in the AST.17
 """18

self._for_depth += 119
if self._for_depth > 1:20

PyOhio 2025

What role should generative AI play in
program analysis and chasten?
• The prior program was automatically generated by Gemini

2.5 Pro with gemini-cli. And, it works! Impressive!

• Similar programs can also be generated by GPT4.1 or Claude
Sonnet 4 with open-code. Again, really nice!

▪ npx https://github.com/google-gemini/gemini-

cli

▪ npx opencode-ai@latest

• Or, use these tools to generate chasten configurations!
PyOhio 2025

Limitations and future directions
• Limitations of the current version of chasten

▪ Doesn’t handle style, formatting, or type inference

▪ Not optimized for fast use in continuous integration

▪ Pattern matches through XPath on Python’s AST

• Empirical study of chasten’s effectiveness and influence

▪ Frequency of false positives or false negatives?

▪ How do students respond to the tool’s feedback?

▪ Differences in scores with varied feedback types?

PyOhio 2025

Chasten your Python program!
• Help developers, researchers, students, and educators

• Write declarative rules for AST-based code checks

• Focus on bespoke code structure patterns in Python

• Automated grading aligned with learning outcomes

• Generate data-rich insights into your code patterns

• Try out Chasten and contribute to its development!

▪ GitHub:

▪ PyPI:

https://github.com/AstuteSource/chasten

https://pypi.org/project/chasten/

PyOhio 2025

https://github.com/AstuteSource/chasten
https://pypi.org/project/chasten/
https://github.com/AstuteSource/chasten
https://pypi.org/project/chasten/

