
Great on their Own, Even
Better Together

Application Development with
Python, Typer, and Poetry

Gregory M. Kapfhammer
CodepaLOUsa 2021

Okay, what is this about?
Key Questions

What are the benefits and challenges associated with using the Python
language, Typer, and Poetry for creating command-line applications?

Intended Audience

An adventuresome technology enthusiast who wants to explore how both a
new paradigm and software tools can improve their development skills!

Let's create a command-line application in Python!

Why focus on Python programming?
Prevalence of Python

Python is consistently ranked as one of the top programming languages for
web development, data science, machine learning, and general
programming

Command-Line Interface

Programmers who start using Python through Jupyter notebooks may need
to create tools and servers that require a command-line interface

What is challenging about programming in Python?

Creating virtual
environments

virtualenv
venv
pipenv

Publishing
packages to PyPI

twine
flit
setup.py

Making command-
line interfaces

argparse
fire
click

What are the downsides
of these tools?

virtualenv uses the requirements.txt file

twine requires use of complicated setup.py file

argparse does not verify command-line arguments

How to easily create
command-line tools
using modern Python?

Typer:
https://typer.tiangolo.com/

Poetry: https://python-
poetry.org/

Typer
Annotations : assign types to
functions accepting arguments
Productivity : types aid in the
creation of the interface
Checking : confirm that inputs
match expected types

Poetry
Environments : manage
dependencies in isolation
Package : create a stand-alone
executable application
Publish : expedite and simplify the
release of program to PyPI

New way to manage application dependencies

Adjust to the challenge of adding type annotations

Easy command-line
interface with Typer
Manage, package, and
release with Poetry

AnalyzeActions/WorkKnow

Creating the Application with Poetry
poetry new workknow

├── coverage.xml

├── poetry.lock

├── pyproject.toml

├── README.md

├── tests

│ ├── __init__.py

│ ├── test_analyze.py

│ ├── test_constants.py

│ └── test_request.py

└── workknow

 ├── __init__.py

 ├── analyze.py

 ├── concatenate.py

 ├── configure.py

 ├── constants.py

 ├── display.py

 ├── environment.py

 ├── files.py

 ├── main.py

Create a simple directory structure
Default support for testing with Pytest
Store separate modules in directory
The main file stores command-line interface
The pyproject.toml file stores dependencies
The poetry.lock file pins dependencies

Application
[tool.poetry.dependencies]

python = "^3.8"

typer = {extras = ["all"],

 version = "^0.3.2"}

rich = "^10.5.0"

requests = "^2.25.1"

python-dotenv = "^0.18.0"

pandas = "^1.3.0"

giturlparse = "^0.10.0"

types-pytz = "^2021.1.0"

PyGithub = "^1.55"
pluginbase = "^1.0.1"

tabulate = "^0.8.9"

types-tabulate = "^0.8.1"

pingouin = "^0.3.12"

Development
[tool.poetry.dev-dependencies]

pytest = "^5.2"

pylint = "^2.6.0"

black = "^20.8b1"

pydocstyle = "^5.1.1"

flake8 = "^3.8.4"

taskipy = "^1.8.1"
pytest-cov = "^2.11.1"

mypy = "^0.910"

pandas-stubs = "^1.1.0"

types-requests = "^2.25.0"

responses = "^0.13.3"

[tool.poetry.scripts]

workknow = "workknow.main:cli"

Poetry installs packages into the virtual environment

Command-Line Interface with Typer
import typer

cli = typer.Typer()

@cli.command()

def download(

 repo_urls: List[str],

 repos_csv_file: Path = typer.Option(None),

 results_dir: Path = typer.Option(None),

 env_file: Path = typer.Option(None),

):

See AnalyzeActions/WorkKnow for
details!

Adding Extra Commands with Typer
import typer

cli = typer.Typer()

@cli.command()

def analyze(

 results_dir: Path = typer.Option(None),

 plugin: str = typer.Option(""),

 save: bool = typer.Option(False),

 debug_level: debug.DebugLevel =

 debug.DebugLevel.ERROR,

):

AnalyzeActions/WorkKnow contains several

Command-Line Interface Documentation
Usage: workknow download [OPTIONS] REPO_URLS...

 Download the GitHub Action workflow history of repositories.

Arguments:

 REPO_URLS... [required]

Options:

 --repos-csv-file PATH

 --results-dir PATH

 --env-file PATH

 --peek / --no-peek [default: False]

 --save / --no-save [default: False]

 --debug-level [DEBUG|INFO|WARNING|ERROR|CRITICAL]

 [default: ERROR]

 --help Show this message and exit.

Using type annotations, Typer can:
automatically generate all menus
perform error checking on all arguments
convert all arguments to the correct type

Running the Program with Poetry
poetry run workknow download --repos-csv-file [CSV File]

 --env-file [ENV File]

 --results-dir [Results Directory]

 --debug-level ERROR

 --save

 --combine

Poetry takes the following steps:
load dependencies into virtual environment
locate the "script" variable that defines main
invoke the main function and pass control

What other cool features does Poetry support?

Specifying Tasks with Poetry
[tool.taskipy.tasks]

black = { cmd = "black workknow tests --check" }

coverage = { cmd = "pytest -s --cov-config .coveragerc [...] }

flake8 = { cmd = "flake8 workknow tests" }

mypy = { cmd = "poetry run mypy workknow" }

pydocstyle = { cmd = "pydocstyle workknow tests" }

pylint = { cmd = "pylint workknow tests" }

test = { cmd = "pytest -x -s" }

Combining Poetry with Taskipy offers:
task specification in pyproject.toml file
task execution through use of Poetry
"poetry run task all" to run all tasks

What are the benefits of running these tasks?

Benefits of type checking
and code formatting?

MyPy: Install and run a type
checker on code modules

Black: Install and run a code
formatter for all Python files

Defect Detection with Type Checker
def create_results_zip_file(

 results_dir: Path, results_files: List[str]

) -> None:

 """Make a .zip file of all results."""

 with zipfile.ZipFile(

 "results/All-WorkKnow-Results.zip",

 "w",

) as results_zip_file:

 for results_file in results_files:

 results_zip_file.write(results_files)

Automated Type Checker Feedback
Argument of type "List[str]" cannot be

assigned to parameter "filename" of

type "StrPath" in function "write"

with zipfile.ZipFile(

 "results/All-WorkKnow-Results.zip",

 "w",

) as results_zip_file:

 for results_file in results_files:

 results_zip_file.write(results_files)

results_file

How to build and publish
a Python package?

Build: create package in
standard format

Publish: publicly release the
package to PyPI

Publishing a Package to PyPI
Poetry Build

Creates the project’s "wheel", the standard format for Python packages.
User installation of the .whl is possible. Program works without use of
Poetry!

Poetry Publish

After creating a PyPI authorization token and configuring Poetry to use it, the
publish command makes it available to everyone through PyPI!

Program is available for installation with pip or pipx!

Challenges
Not stand-alone binary, so
program needs Python to run
Poetry and Typer are relatively new
tools, so defects are possible
Typer only works if you use type
annotations, so extra work needed

Benefits
Poetry seamlessly manages
dependencies and environments
Typer automatically creates the
command-line interface
Poetry makes task running and
publishing to PyPI effortless

Two packages to build command-line tools in Python!

Quick environments, dependencies, and releases!

Best way to easily create
command-line tools
using modern Python?

Typer:
https://typer.tiangolo.com/

Poetry: https://python-
poetry.org/

Great resources for
learning more about
these Python tools?
https://typer.tiangolo.com/tutorial/package/

https://realpython.com/effective-python-environment/

Share your experiences with the Python community!

Tool Development with Python
Typer and Poetry effectively work together!

Programmers define types for functions

Create program's command-line with Typer

Poetry handles dependencies and releases

Tool Development with Python
Typer and Poetry provide an "opinionated" option

AnalyzeActions/WorkKnow

https://www.gregorykapfhammer.com/

gkapfham/codepalousa2021-presentation-typer

