Search-Based Testing of Relational Schema Integrity Constraints Across Multiple Database Management Systems

Gregory M. Kapfhammer¹ & Phil McMinn² & Chris J. Wright²

¹Allegheny College, USA ²University of Sheffield, UK

Sixth IEEE International Conference on Software Testing, Verification and Validation (ICST 2013)

Tuesday, March 19, 2013

The University Of Sheffield.

Introduction	
•0	
00	

Motivation

Testing	Technique
0000	
00	

Empirical Study

Conclusion

0

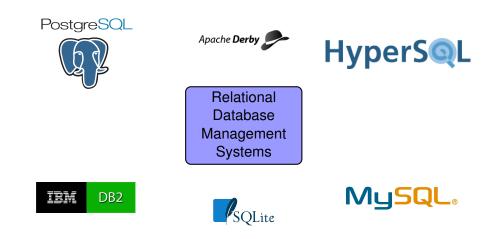
Databases Are Everywhere!

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	ı
•0	
00	

Motivation


Testing	Technique
0000	
00	

Empirical Study

Conclusion

0

Databases Are Everywhere!

Kapfhammer, McMinn, and Wright

March 19, 2013

Motivation

Testing Technique

Empirical Study

Conclusion

0

Databases Are Everywhere!

Deployment Locations for Databases

Kapfhammer, McMinn, and Wright

March 19, 2013

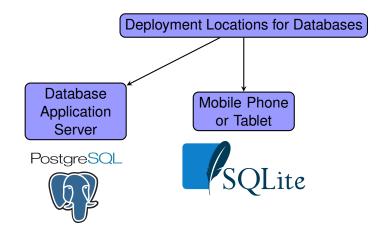
Introduction	Testing Technique	Empirical Study	Conclusion
0 • 0 0	0000	00 00000	0
Motivation			

Kapfhammer, McMinn, and Wright

March 19, 2013

ntroduction	
00	
00	

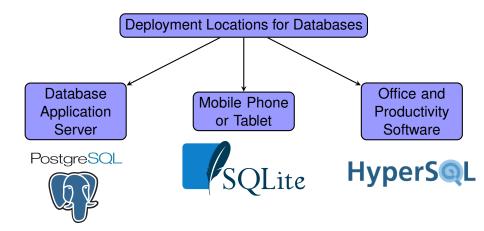
Motivation


Testing Technique

Empirical Study

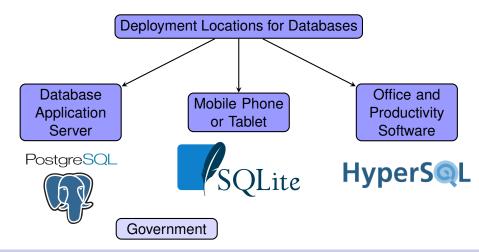
Conclusion

0


Databases Are Everywhere!

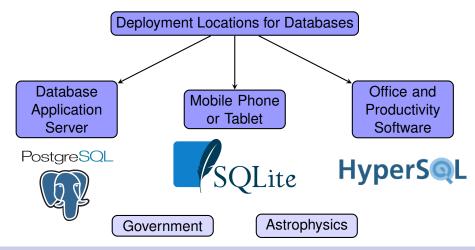
Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000 00	00 00000	0
Motivation			

Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000 00	00 00000	0
Motivation			

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
O • OO	0000 00	00 00000	0
Motivation			

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction oo oo

Challenges

Testing Technique

Empirical Study

Conclusion

0

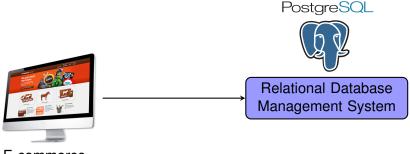
Relational Database Schema

Relational Database Management System

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00 00	
Challenges	


Testing Technique

Empirical Study

Conclusion

0

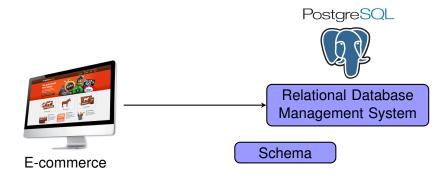
Relational Database Schema

E-commerce

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction
00 00
Challenges


Testing	Technique
0000	
00	

Empirical Study

Conclusion

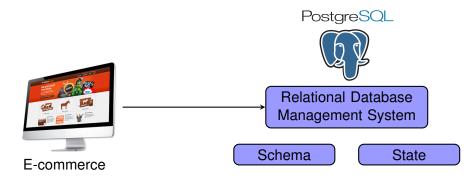
0

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00 00	
Challenges	


Testing	Technique
0000	
00	

Empirical Study

Conclusion

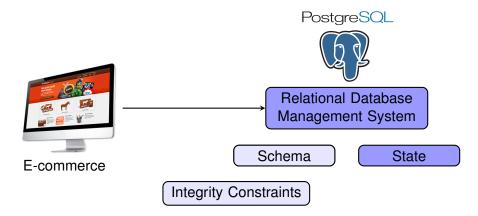
0

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
•0	
Challanges	


Testing Technique

Empirical Study

Conclusion

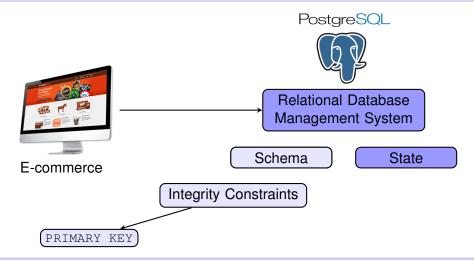
0

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00 00	
Challenges	


Testing Technique

Empirical Study

Conclusion

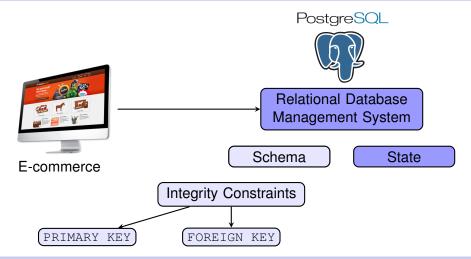
0

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00 00	
Challenges	


Testing	Technique
0000	
00	

Empirical Study

Conclusion

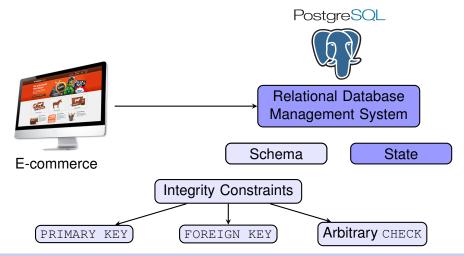
0

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
● ○	
Challenges	


Testing	Technique
0000	
00	

Empirical Study

Conclusion

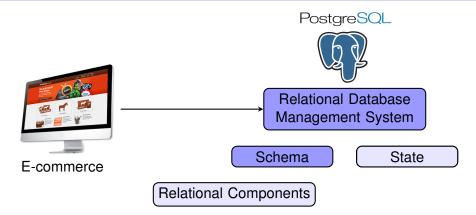
0

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00 00	
Challenges	


Testing Technique

Empirical Study

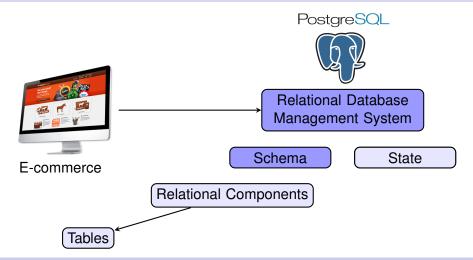
Conclusion

0

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction Challenges

ĕŏ

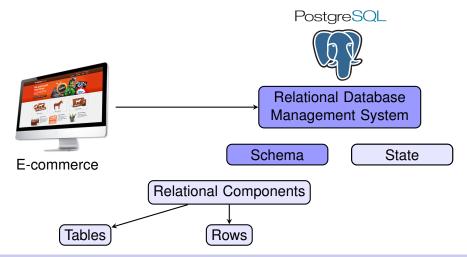
Testing Technique

Empirical Study

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction Challenges

ĕŏ

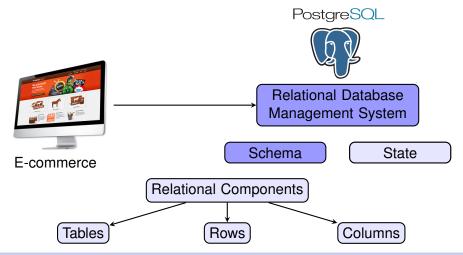
Testing Technique

Empirical Study

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction Challenges

ĕŏ

Testing Technique

Empirical Study

Relational Database Schema

Kapfhammer, McMinn, and Wright

March 19, 2013

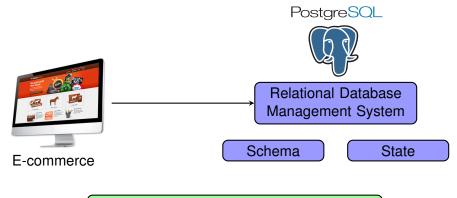
 Introduction
 Testing Technique
 Empirical Study

 00
 0000
 00

 00
 0000
 00

 00
 00
 00

 00
 00
 00

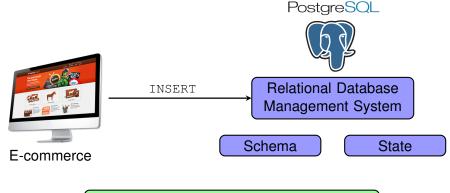

 00
 00
 00

 00
 00
 00

Conclusion

0

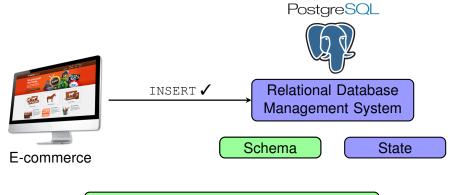
Relational Database Schema



The Relational Schema is Working Correctly

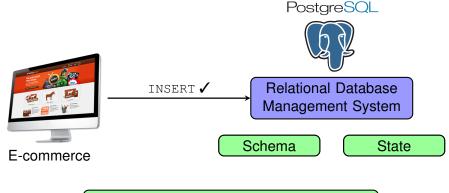
Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction o • o	Testing Technique	Empirical Study oo ooooo	Conclusior o
Challenges			
Relational Data	abase Schema		

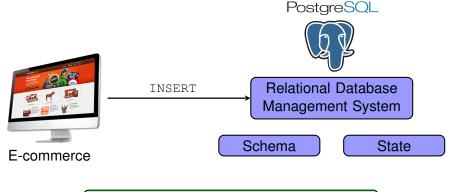
Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction o	Testing Technique	Empirical Study oo ooooo	Conclusion
Challenges			
Relational Data	abase Schema		

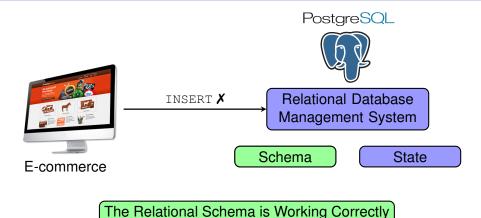
Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction oc oc	Testing Technique	Empirical Study oo ooooo	Conclusion o
Challenges			
Relational Data	abase Schema		

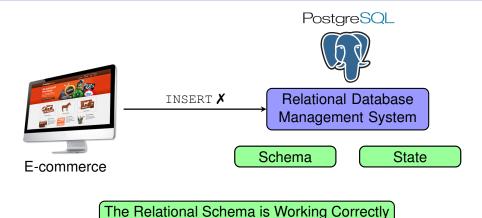
Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction ○○ ●○	Testing Technique 0000 00	Empirical Study oo ooooo	Conclusion o
Challenges			
Relational Data	abase Schema		

Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction	Testing Technique	Empirical Study	Conclusion
•0	00	00000	0
Challenges			
Relational Dat	abase Schema		

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
••	00	00000	0
Challenges			
Relational Data	abase Schema		

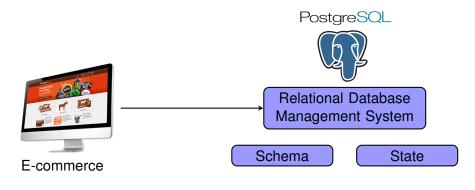
Kapfhammer, McMinn, and Wright

March 19, 2013

 Introduction
 Testing Technique
 Empirical Study

 ○○
 ○○○
 ○○

 ●○
 ○○
 ○○

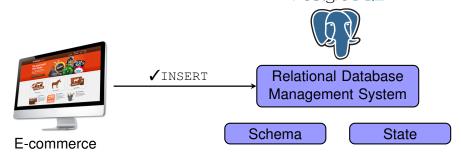

 ●○
 ○○
 ○○

 Challenges
 □

Conclusion

0

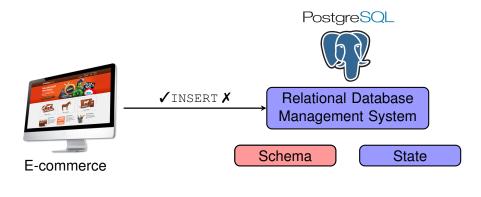
Relational Database Schema



The Relational Schema is Not Working Correctly

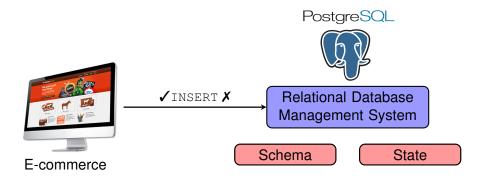
Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction	Testing Technique 0000 00	Empirical Study	Conclusion o
Challenges			
Relational Database Schema			
		PostareSQL	_

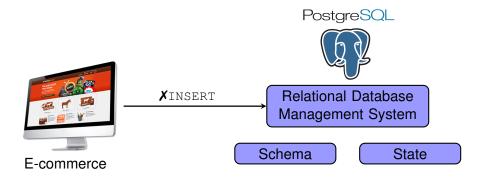
Kapfhammer, McMinn, and Wright

March 19, 2013


Introduction	Testing Technique	Empirical Study	Conclusion
●○ Challenges	00	00000	0
Relational Da	tabase Schem	a	

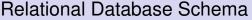
Kapfhammer, McMinn, and Wright

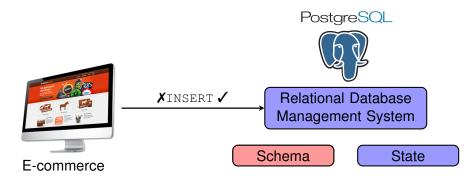
March 19, 2013


Introduction	Testing Technique	Empirical Study	Conclusion
●○ Challenges	00	00000	0
Relational Da	tabase Schem	a	

Kapfhammer, McMinn, and Wright

March 19, 2013

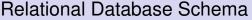

Introduction	Testing Technique	Empirical Study	Conclusion
•0	00	00000	0
Challenges			
Relational Data	abase Schema		

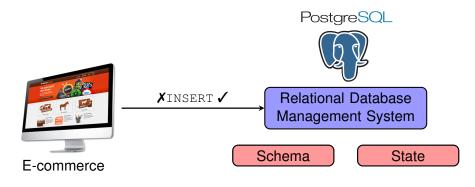


Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
••	0000	00000	0
Challenges			
Relational	Database Schem	a	

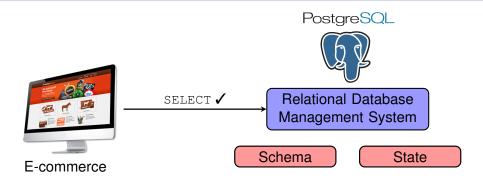




Kapfhammer, McMinn, and Wright

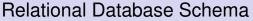
March 19, 2013

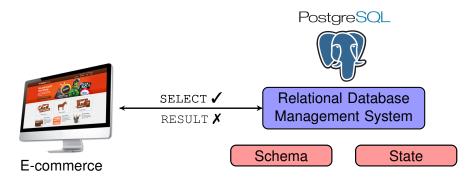
Introduction	Testing Technique	Empirical Study	Conclusion
00 •0	0000	00 00000	0
Challenges			
Relational	Natabasa Scham	a	



Kapfhammer, McMinn, and Wright

March 19, 2013

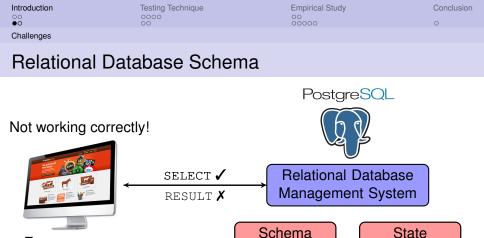

Introduction	Testing Technique	Empirical Study	Conclusion
••	0000	00 00000	0
Challenges			
Relational Dat	abase Schema		



Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction ○○ ●○	Testing Technique 0000 00	Empirical Study 00 00000	Conclusion o
Challenges			
Deletienel Detekson Oskons			



The Relational Schema is Not Working Correctly

Kapfhammer, McMinn, and Wright

March 19, 2013

E-commerce

The Relational Schema is Not Working Correctly

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction o o Challenges Testing Technique

Empirical Study

Conclusion

0

Need for Relational Schema Testing

The Data Warehouse Institute reports that North American organizations experience a \$611 billion annual loss due to poor data quality

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction o o Challenges Testing Technique

Empirical Study

Conclusion

0

Need for Relational Schema Testing

The Data Warehouse Institute reports that North American organizations experience a \$611 billion annual loss due to poor data quality

Scott W. Ambler argues that the "virtual absence" of database testing — the validation of the contents, schema, and functionality of the database — is the primary cause of this loss

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction o o Challenges Testing Technique

Empirical Study

Conclusion

0

Need for Relational Schema Testing

The Data Warehouse Institute reports that North American organizations experience a \$611 billion annual loss due to poor data quality

Scott W. Ambler argues that the "virtual absence" of database testing — the validation of the contents, schema, and functionality of the database — is the primary cause of this loss

This paper presents *SchemaAnalyst*, a search-based system for testing the complex integrity constraints in relational schemas

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Defects in Relational Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
          CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                 CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
           CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

The highlighted integrity constraints determine what data is valid

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

CREATE TABLE Flights (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL, ORIGINAL_AIRPORT CHAR(3), DEPART TIME TIME, DEST AIRPORT CHAR(3), ARRIVE TIME TIME, MEAT. CHAR(1). PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), CHECK (MEAL IN ('B', 'L', 'D', 'S')));

The highlighted integrity constraints determine what data is valid

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Defects in Relational Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
           CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

The highlighted integrity constraints determine what data is valid

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Defects in Relational Schemas

CREATE TABLE Fligh	its (
FLIGHT_ID	CHAR(6) NOT NULL,	
SEGMENT_NUMBER	INT NOT NULL,	
ORIGINAL_AIRPORT	CHAR(3),	
DEPART_TIME	TIME,	
DEST_AIRPORT	CHAR(3),	
ARRIVE_TIME	TIME,	
MEAL	CHAR(1),	
PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),		
CHECK (MEAL IN ('B', 'L', 'D', 'S'))		
);		

The highlighted integrity constraints determine what data is valid

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

CREATE TABLE FlightAvail	Lable (
FLIGHT_ID	CHAR(6)	NOT NULL,
SEGMENT_NUMBER	INT	NOT NULL,
FLIGHT_DATE	DATE	NOT NULL,
ECONOMY_SEATS_TAKEN	INT,	
BUSINESS_SEATS_TAKEN	INT,	
FIRSTCLASS_SEATS_TAKEN	INT,	
PRIMARY KEY (FLIGHT_ID,	SEGMENT	NUMBER),
FOREIGN KEY (FLIGHT_ID,	SEGMENT	NUMBER)
REFERENCES Flights (FL	IGHT_ID,	SEGMENT_NUMBER)
);		

The highlighted integrity constraints determine what data is valid

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

CREATE TABLE FlightAvail	Lable (
FLIGHT_ID	CHAR(6)	NOT NULL,
SEGMENT_NUMBER	INT	NOT NULL,
FLIGHT_DATE	DATE	NOT NULL,
ECONOMY_SEATS_TAKEN	INT,	
BUSINESS_SEATS_TAKEN	INT,	
FIRSTCLASS_SEATS_TAKEN	INT,	
PRIMARY KEY (FLIGHT_ID,	SEGMENT_	NUMBER),
FOREIGN KEY (FLIGHT_ID,	SEGMENT	NUMBER)
REFERENCES Flights (Fl	IGHT_ID,	SEGMENT_NUMBER)
);		

The highlighted integrity constraints determine what data is valid

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

CREATE TABLE FlightAvail	Lable (
FLIGHT_ID	CHAR(6)	NOT NULL,
SEGMENT_NUMBER	INT	NOT NULL,
FLIGHT_DATE	DATE	NOT NULL,
ECONOMY_SEATS_TAKEN	INT,	
BUSINESS_SEATS_TAKEN	INT,	
FIRSTCLASS_SEATS_TAKEN	INT,	
PRIMARY KEY (FLIGHT_ID,	SEGMENT.	NUMBER),
FOREIGN KEY (FLIGHT_ID,	SEGMENT	NUMBER)
REFERENCES Flights (FL	IGHT_ID,	SEGMENT_NUMBER)
);		

The highlighted integrity constraints determine what data is valid

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

CREATE TABLE FlightAvail	lable (
FLIGHT_ID	CHAR(6) NOT NULL,
SEGMENT_NUMBER	INT NOT NULL,
FLIGHT_DATE	DATE NOT NULL,
ECONOMY_SEATS_TAKEN	INT,
BUSINESS_SEATS_TAKEN	INT,
FIRSTCLASS_SEATS_TAKEN	INT,
PRIMARY KEY (FLIGHT_ID,	SEGMENT_NUMBER),
FOREIGN KEY (FLIGHT_ID,	SEGMENT_NUMBER)
REFERENCES Flights (FI	light_id, segment_number)
);	

The highlighted integrity constraints determine what data is valid

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Defects in Relational Schemas

Defect: The schema does not contain the correct primary key!

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Defects in Relational Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Defect: The schema does not contain the correct primary key!

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

CREATE TABLE FlightAvailable (FLIGHT ID CHAR(6) NOT NULL, SEGMENT_NUMBER TNT NOT NULL, FLIGHT_DATE DATE NOT NULL, ECONOMY_SEATS_TAKEN INT, BUSINESS_SEATS_TAKEN INT, FIRSTCLASS_SEATS_TAKEN INT, PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), FOREIGN KEY (FLIGHT_ID, SEGMENT_NUMBER) REFERENCES Flights (FLIGHT_ID, SEGMENT_NUMBER));

Defect: The schema does not contain the correct primary key!

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

CDEATE TADLE ElightAngi	labla (
CREATE TABLE FlightAvail	Table (
FLIGHT_ID	CHAR(6) NOT NULL,
SEGMENT_NUMBER	INT NOT NULL,
FLIGHT_DATE	DATE NOT NULL,
ECONOMY_SEATS_TAKEN	INT,
BUSINESS_SEATS_TAKEN	INT,
FIRSTCLASS_SEATS_TAKEN	INT,
PRIMARY KEY (FLIGHT_ID,	SEGMENT_NUMBER),
FOREIGN KEY (FLIGHT_ID,	SEGMENT_NUMBER)
REFERENCES Flights (FI	LIGHT_ID, SEGMENT_NUMBER)
);	

Question: What kind of INSERT(s) will reveal this defect?

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

INSERT INTO Flights VALUES ('UA20', 1, ...) ✓

Question: What kind of INSERT(s) will reveal this defect?

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

INSERT INTO Flights VALUES('UA20', 1, ...) ✓ INSERT INTO Flights VALUES('UA20', 2, ...) ✗

Question: What kind of INSERT(s) will reveal this defect?

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction Testing Technique

Test Data Generation

Empirical Study

Conclusion

0

Defects in Relational Schemas

INSERT INTO Flights VALUES ('UA20', 1, ...) ✓ INSERT INTO Flights VALUES ('UA20', 2, ...) X

Explanation: A flight with two different segments is no longer allowed!

Question: What kind of INSERT(s) will reveal this defect?

Kapfhammer, McMinn, and Wright

March 19, 2013

troduction Testing

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Defects in Relational Schemas

SchemaAnalyst automatically generates these INSERTS and this data!

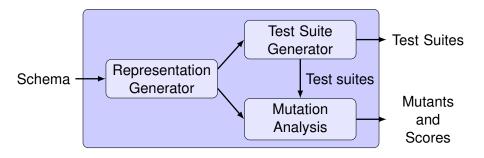
Explanation: A flight with two different segments is no longer allowed!

Question: What kind of INSERT(s) will reveal this defect?

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation


Testing Technique

Empirical Study

Conclusion

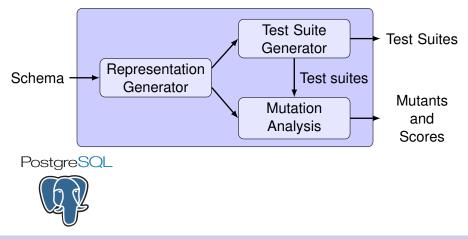
0

Search-Based Testing with SchemaAnalyst

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation


Testing Technique

Empirical Study

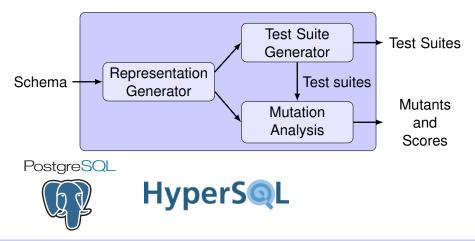
Conclusion

0

Search-Based Testing with SchemaAnalyst

Kapfhammer, McMinn, and Wright

March 19, 2013


oo Test Data Generation Testing Technique

Empirical Study

Conclusion

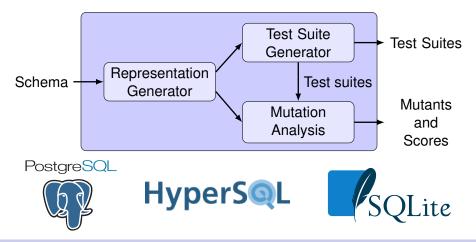
0

Search-Based Testing with SchemaAnalyst

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation


Testing Technique

Empirical Study

Conclusion

0

Search-Based Testing with SchemaAnalyst

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Goals and Stages of Test Data Generation

Goal of test data generation?

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Goals and Stages of Test Data Generation

Goal of test data generation?

INSERT INTO T_1 VALUES (1, Jan-08-99, ...) 🗸

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Goals and Stages of Test Data Generation

Goal of test data generation?

INSERT INTO T_1 VALUES (1, Jan-08-99, ...) 🗸

INSERT INTO T_1 VALUES (1, Jan-08-99, ...) X

Kapfhammer, McMinn, and Wright

March 19, 2013

Test Data Generation

Testing Technique

Empirical Study

Conclusion

0

Goals and Stages of Test Data Generation

Goal of test data generation?

INSERT INTO T_1 VALUES(1, Jan-08-99, ...) 🗸

INSERT INTO T_1 VALUES (1, Jan-08-99, ...) X

INSERT INTO T_n VALUES (true, 'L-20', ...) 🗸

INSERT INTO T_n VALUES (false, 'L-1', ...) X

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

```
CREATE TABLE Flights (
 FLIGHT_ID
           CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                 TIME,
 DEST AIRPORT
                 CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

CREATE TABLE Flights (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL, ORIGINAL_AIRPORT CHAR(3), DEPART TIME TIME, DEST AIRPORT CHAR(3), ARRIVE TIME TIME, MEAT. CHAR(1). PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), CHECK (MEAL IN ('B', 'L', 'D', 'S')));

Stage 1: Generate rows of data to satisfy the integrity constraints

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

CREATE TABLE Flights (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL, ORIGINAL_AIRPORT CHAR(3), DEPART TIME TIME, DEST AIRPORT CHAR(3), ARRIVE TIME TIME, MEAT. CHAR(1). PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), CHECK (MEAL IN ('B', 'L', 'D', 'S')));

Stage 1: Generate rows of data to satisfy the integrity constraints

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

```
CREATE TABLE Flights (
 FLIGHT_ID
           CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                 TIME,
 DEST AIRPORT
                 CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

CREATE TABLE Flights (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL, ORIGINAL_AIRPORT CHAR(3), DEPART TIME TIME, DEST AIRPORT CHAR(3), ARRIVE TIME TIME, MEAT. CHAR(1). PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), CHECK (MEAL IN ('B', 'L', 'D', 'S')));

Stage 2: Generate rows of data to negate a constraint

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Stage 2: Generate rows of data to negate a constraint

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

CREATE TABLE Flights (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL, ORIGINAL_AIRPORT CHAR(3), DEPART TIME TIME, DEST AIRPORT CHAR(3), ARRIVE TIME TIME, MEAT. CHAR(1). PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), CHECK (MEAL IN ('B', 'L', 'D', 'S')));

A fitness function computes a numeric value minimized by search

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

CREATE TABLE Flights (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL, ORIGINAL_AIRPORT CHAR(3), DEPART TIME TIME, DEST AIRPORT CHAR(3), ARRIVE TIME TIME, MEAT. CHAR(1). PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), CHECK (MEAL IN ('B', 'L', 'D', 'S')));

Data's fitness is closer to zero when nearer to a primary key value

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

CREATE TABLE Flights (FLIGHT_ID CHAR (6) NOT NULL, SEGMENT_NUMBER INT NOT NULL, ORIGINAL_AIRPORT CHAR(3), DEPART TIME TIME, DEST AIRPORT CHAR(3), ARRIVE TIME TIME, MEAT. CHAR(1). PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), CHECK (MEAL IN ('B', 'L', 'D', 'S')));

Types, primary and foreign keys, UNIQUE, NOT NULL, and CHECK

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Goals and Stages of Test Data Generation

CREATE TABLE Flights (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL, ORIGINAL_AIRPORT CHAR(3), DEPART TIME TIME, DEST AIRPORT CHAR(3), ARRIVE TIME TIME, MEAT. CHAR(1). PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), CHECK (MEAL IN ('B', 'L', 'D', 'S')));

See the paper for more details about the computation of fitness

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction 00 00	Testing Technique ooo● oo	Empirical Study	Conclusion o
Test Data Generation			

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Alternating Variable Method

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	

Testing Technique

Empirical Study

Conclusion

0

Test Data Generation

Alternating Variable Method

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusi
oo	○○●	oo	
oo	○○	ooooo	
Test Data Generation			

Use the defaults to form the initial values of the INSERT variables

Kapfhammer, McMinn, and Wright

March 19, 2013

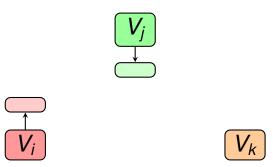
Introduction oo oo	Testing Technique ○○● ○○	Empirical Study oo ooooo	Conclusi o
Test Data Generation			

Use exploratory moves to determine the correct direction for search

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique ooo●	Empirical Study	Cond
Test Data Generation			Ŭ

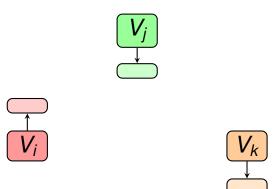


Use exploratory moves to determine the correct direction for search

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction 00 00	Testing Technique ooo● oo	Empirical Study	Conclusion o
Test Data Generation			

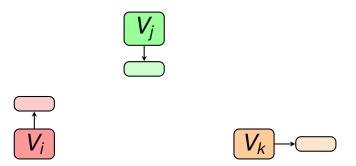


Use exploratory moves to determine the correct direction for search

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction oo oo	Testing Technique ○○○● ○○	Empirical Study oo ooooo	Conclusion o
Test Data Generation			

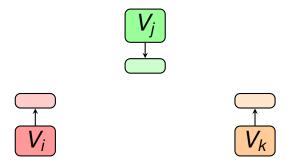


Use exploratory moves to determine the correct direction for search

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00	0000	00 00000	0
Test Data Generation			

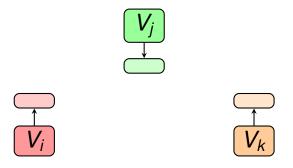


Use exploratory moves to determine the correct direction for search

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction 00	Testing Technique ooo● oo	Empirical Study	Conclusion o
Test Data Generation			

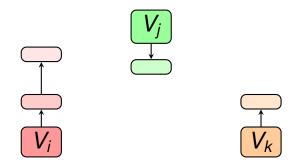


Use exploratory moves to determine the correct direction for search

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique ○○○●	Empirical Study	Conclusion
Test Data Generation			-

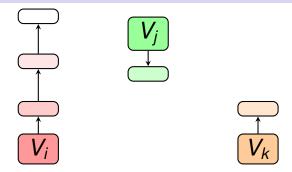


Use pattern moves to accelerate the improvements in fitness

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000 00	00 00000	0
Test Data Generation			

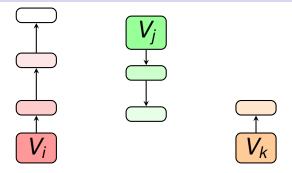


Use pattern moves to accelerate the improvements in fitness

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	000 0 00	00 00000	0
Test Data Generation			

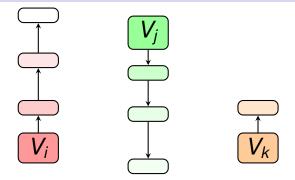


Use pattern moves to accelerate the improvements in fitness

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	000	00	0
Test Data Generation			

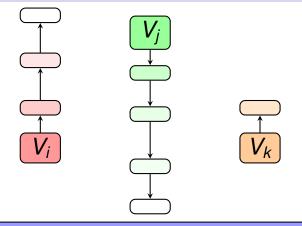


Use pattern moves to accelerate the improvements in fitness

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000	00	0
Test Data Generation			

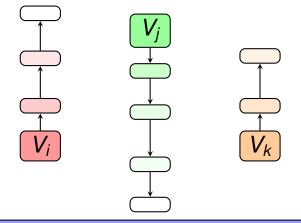


Use pattern moves to accelerate the improvements in fitness

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000	00	0
Test Data Generation			

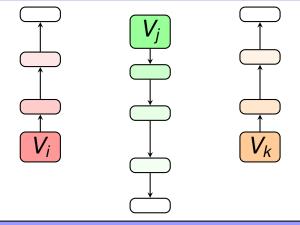


Use pattern moves to accelerate the improvements in fitness

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000	00	0
Test Data Generation			

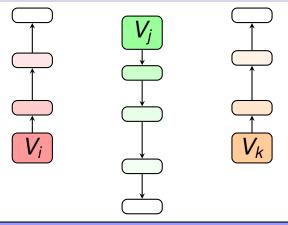


Use pattern moves to accelerate the improvements in fitness

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	000	00	0
Test Data Generation			

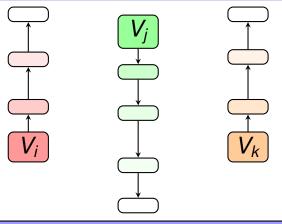


Use pattern moves to accelerate the improvements in fitness

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000	00	0
Test Data Generation			



AVM terminates when the fitness is zero or an exploration cycle fails

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000	00	0
Test Data Generation			

Restart AVM with random column values when an exploration cycle fails

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
           CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

CREATE TABLE Flights (FLIGHT_ID CHAR(6) NOT NULL, SEGMENT_NUMBER INT NOT NULL, ORIGINAL_AIRPORT CHAR(3), DEPART TIME TIME, DEST AIRPORT CHAR(3), ARRIVE TIME TIME, MEAT. CHAR(1). PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), CHECK (MEAL IN ('B', 'L', 'D', 'S')));

Use mutation analysis to assess the adequacy of INSERTS and values

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Primary Keys: Remove, replace, and add column operators

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Primary Keys: Remove, replace, and add column operators

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Primary Keys: Remove, replace, and add column operators

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (ORIGINAL AIRPORT, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Primary Keys: Remove, replace, and add column operators

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

Primary Keys: Remove, replace, and add column operators

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

CREATE TABLE Fligh	ts(
FLIGHT_ID	CHAR(6) NOT NULL,
SEGMENT_NUMBER	INT NOT NULL,
ORIGINAL_AIRPORT	CHAR(3),
DEPART_TIME	TIME,
DEST_AIRPORT	CHAR(3),
ARRIVE_TIME	TIME,
MEAL	CHAR(1),
PRIMARY KEY (FLIGHT_	ID, SEGMENT_NUMBER, DEST_AIRPORT),

```
CHECK (MEAL IN ('B', 'L', 'D', 'S'))
```

);

Primary Keys: Remove, replace, and add column operators

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

UNIQUE: Handle in a fashion similar to the primary key operator

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                  TIME,
 MEAT.
                  CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

NOT NULL: Reverse the status for all non-primary key columns

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR (6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                   TIME,
 MEAT.
                   CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

NOT NULL: Reverse the status for all non-primary key columns

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3) NOT NULL,
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                   TIME,
 MEAT.
                   CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

NOT NULL: Reverse the status for all non-primary key columns

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

```
CREATE TABLE Flights (
 FLIGHT_ID
             CHAR(6) NOT NULL,
 SEGMENT_NUMBER INT NOT NULL,
 ORIGINAL_AIRPORT CHAR(3),
 DEPART TIME
                  TIME,
 DEST AIRPORT
                  CHAR(3),
 ARRIVE TIME
                   TIME,
 MEAT.
                   CHAR(1).
 PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),
 CHECK (MEAL IN ('B', 'L', 'D', 'S'))
);
```

CHECK: Remove the constraint for each of the checked columns

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Mutation Operators for Schemas

CREATE TABLE Fligh	ts(
FLIGHT_ID	CHAR(6)	NOT NULL,						
SEGMENT_NUMBER	INT	NOT NULL,						
ORIGINAL_AIRPORT	CHAR(3)	1						
DEPART_TIME	TIME,							
DEST_AIRPORT	CHAR(3)	1						
ARRIVE_TIME	TIME,							
MEAL	CHAR(1)	,						
PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER),								
CHECK (MEAL IN ('B	', 'L',	′D′, ′S′))						
);								

CHECK: Remove the constraint for each of the checked columns

Kapfhammer, McMinn, and Wright

March 19, 2013

Empirical Study

Belational Schema Mutation

Mutation Operators for Schemas

CREATE TABLE FlightAvailable (FLIGHT ID CHAR(6) NOT NULL, SEGMENT_NUMBER TNT NOT NULL, FLIGHT_DATE DATE NOT NULL, ECONOMY_SEATS_TAKEN INT, BUSINESS_SEATS_TAKEN INT, FIRSTCLASS_SEATS_TAKEN INT, PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), FOREIGN KEY (FLIGHT_ID, SEGMENT_NUMBER) REFERENCES Flights (FLIGHT_ID, SEGMENT_NUMBER)

);

Foreign Keys: Remove each column from the key

Kapfhammer, McMinn, and Wright

March 19, 2013

Empirical Study

Belational Schema Mutation

Mutation Operators for Schemas

CREATE TABLE FlightAvailable (FLIGHT ID CHAR(6) NOT NULL, SEGMENT_NUMBER TNT NOT NULL, FLIGHT_DATE DATE NOT NULL, ECONOMY_SEATS_TAKEN INT, BUSINESS_SEATS_TAKEN INT, FIRSTCLASS_SEATS_TAKEN INT, PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), FOREIGN KEY (FLIGHT_ID, SEGMENT_NUMBER) REFERENCES Flights (FLIGHT_ID, SEGMENT_NUMBER)

);

Foreign Keys: Remove each column from the key

Kapfhammer, McMinn, and Wright

March 19, 2013

Empirical Study

Belational Schema Mutation

Mutation Operators for Schemas

CREATE TABLE FlightAvailable (FLIGHT ID CHAR(6) NOT NULL, SEGMENT_NUMBER TNT NOT NULL, FLIGHT_DATE DATE NOT NULL, ECONOMY_SEATS_TAKEN INT, BUSINESS_SEATS_TAKEN INT, FIRSTCLASS_SEATS_TAKEN INT, PRIMARY KEY (FLIGHT_ID, SEGMENT_NUMBER), FOREIGN KEY (FLIGHT_ID, SEGMENT_NUMBER) REFERENCES Flights (FLIGHT_ID, SEGMENT_NUMBER)

);

Foreign Keys: Remove each column from the key

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Calculating the Mutation Score

 $M_D = \frac{|K \cup Q|}{|K \cup N|}$

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Calculating the Mutation Score

 $M_{D} = \frac{|K \cup Q|}{|K \cup N|}$

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Calculating the Mutation Score

 $M_D = \frac{|\mathbf{K} \cup \mathbf{Q}|}{|\mathbf{K} \cup \mathbf{N}|}$

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Calculating the Mutation Score

 $M_D = \frac{|K \cup Q|}{|K \cup N|}$

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Calculating the Mutation Score

 $M_D = \frac{|K \cup Q|}{|K \cup N|}$

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Calculating the Mutation Score

 $M_D = \frac{|K \cup Q|}{|K \cup N|}$

HyperSQL

Q

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Calculating the Mutation Score

 $M_D = \frac{|K \cup Q|}{|K \cup N|}$

HyperSQL

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Calculating the Mutation Score

 $M_D = \frac{|K \cup Q|}{|K \cup N|}$

HyperSQL

PostgreSQL

Kapfhammer, McMinn, and Wright

March 19, 2013

Testing Technique

Empirical Study

Conclusion

0

Relational Schema Mutation

Calculating the Mutation Score

 $M_D = \frac{|K \cup Q|}{|K \cup N|}$ PostgreSQL

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction oo oo	Testing Technique	Empirical Study	Conclusion o
Configuration			

Schema	Tables	Columns	Checks	Fo _{reign keys}	Not Nulls	Primary _{Keys}	U _{niques}	Total Constraints
BankAccount	2	9	0	1	5	2	0	8
BookTown	23	69	1	0	17	11	0	29
Cloc	2	10	0	0	0	0	0	0
CoffeeOrders	5	20	0	4	9	5	0	18
CustomerOrder	7	32	1	7	27	7	0	42

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction oo oo	Testing Technique	Empirical Study	Conclusion o
Configuration			

Schema	Tables	Columns	Checks	Fo _{reign keys}	Not Nulls	Primary _{Keys}	U _{niques}	Total Constraint
BankAccount	2	9	0	1	5	2	0	8
BookTown	23	69	1	0	17	11	0	29
Cloc	2	10	0	0	0	0	0	0
CoffeeOrders	5	20	0	4	9	5	0	18
CustomerOrder	7	32	1	7	27	7	0	42

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction 00 00	Testing Technique	Empirical Study	Conclusion
Configuration			

Schema	Tables	Columns	Checks	Fo _{reign keys}	Not Nulls	Primary _{Keys}	Uniques	^T otal _{Constraints}
BankAccount	2	9	0	1	5	2	0	8
BookTown	23	69	1	0	17	11	0	29
Cloc	2	10	0	0	0	0	0	0
CoffeeOrders	5	20	0	4	9	5	0	18
CustomerOrder	7	32	1	7	27	7	0	42

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction 00 00	Testing Technique	Empirical Study	Conclusion o
Configuration			

Schema	Tables	Columns	Checks	Fo _{reign keys}	Not Nulls	Primary _{Keys}	U _{niques}	Total Constraints
BankAccount	2	9	0	1	5	2	0	8
BookTown	23	69	1	0	17	11	0	29
Cloc	2	10	0	0	0	0	0	0
CoffeeOrders	5	20	0	4	9	5	0	18
CustomerOrder	7	32	1	7	27	7	0	42

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction	Testing Technique	Empirical Study	Conclusion
00	00	00000	0
Configuration			

Schema	Tables	Columns	ch _{ecks}	Fo _{reign keys}	Not Nulls	Primary _{Keys}	Uniques	^T otal Constraints
BankAccount	2	9	0	1	5	2	0	8
BookTown	23	69	1	0	17	11	0	29
Cloc	2	10	0	0	0	0	0	0
CoffeeOrders	5	20	0	4	9	5	0	18
CustomerOrder	7	32	1	7	27	7	0	42

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction 00 00	Testing Technique	Empirical Study	Conclusion o
Configuration			

Schema	Tables	Columns	Checks	Fo _{reign keys}	Not Nulls	Primary _{Keys}	Unique _S	^T otal Constraints
BankAccount	2	9	0	1	5	2	0	8
BookTown	23	69	1	0	17	11	0	29
Cloc	2	10	0	0	0	0	0	0
CoffeeOrders	5	20	0	4	9	5	0	18
CustomerOrder	7	32	1	7	27	7	0	42

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction 00 00	Testing Technique	Empirical Study	Conclusion o
Configuration			

Schema	l'ables	Columns	ch _{ecks}	Fo _{reign keys}	Not Nulls	Primary keys	Uniques	Total Constraints
BankAccount	2	9	0	1	5	2	0	8
BookTown	23	69	1	0	17	11	0	29
Cloc	2	10	0	0	0	0	0	0
CoffeeOrders	5	20	0	4	9	5	0	18
CustomerOrder	7	32	1	7	27	7	0	42

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction	Testing Technique	Empirical Study	Conclusion
00	00	00000	0
Configuration			

Schema	lables	Columns	Ch _{ecks}	Fo _{reign keys}	Not Nulls	Primary _{Keys}	Un _{iques}	^T otal _{Constraints}
DellStore	8	52	0	0	36	0	0	36
Employee	1	7	3	0	0	1	0	4
Examination	2	21	6	1	0	2	0	9
Flights	2	13	1	1	6	2	0	10
FrenchTowns	3	14	0	2	13	0	8	23

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction	Testing Technique	Empirical Study	Conclusion
00	00	00000	0
Configuration			

Schema	Tables	Columns	Ch _{ecks}	Fo _{reign keys}	Not Nulls	Primary _{Keys}	U _{niques}	^T otal _{Constraints}
DellStore	8	52	0	0	36	0	0	36
Employee	1	7	3	0	0	1	0	4
Examination	2	21	6	1	0	2	0	9
Flights	2	13	1	1	6	2	0	10
FrenchTowns	3	14	0	2	13	0	8	23

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction 00 00	Testing Technique	Empirical Study	Conclusion o
Configuration			

Schema	Tables	Columns	Checks	Fo _{reign keys}	Not Nulls	Primary _{keys}	Un _{iques}	^T otal _{Constraints}
Inventory	1	4	0	0	0	1	1	2
lso3166	1	3	0	0	2	1	0	3
JWhoisServer	6	49	0	0	44	6	0	50
NistDML181	2	7	0	1	0	1	0	2
NistDML182	2	32	0	1	0	1	0	2

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction 00 00	Testing Technique	Empirical Study	Conclusion o
Configuration			

Schema	Tables	Column _S	ch _{ecks}	Fo _{reign keys}	Not Nulls	Primary keys	Un _{iques}	^{Total} Constraints
Inventory	1	4	0	0	0	1	1	2
lso3166	1	3	0	0	2	1	0	3
JWhoisServer	6	49	0	0	44	6	0	50
NistDML181	2	7	0	1	0	1	0	2
NistDML182	2	32	0	1	0	1	0	2

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction 00 00	Testing Technique	Empirical Study	Conclusion o
Configuration			

Schema	Tables	Columns	Checks	Fo _{reign keys}	Not Nulls	Primary _{Keys}	U _{niques}	^{Total} Constraints
Inventory	1	4	0	0	0	1	1	2
lso3166	1	3	0	0	2	1	0	3
JWhoisServer	6	49	0	0	44	6	0	50
NistDML181	2	7	0	1	0	1	0	2
NistDML182	2	32	0	1	0	1	0	2

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction oo oo	Testing Technique	Empirical Study	Conclusion o
Configuration			

Schema	Tables	Columns	Ch _{ecks}	Foreign _{keys}	Not Nulls	Primary _{Keys}	Unique _S	^T otal _{Constraints}
NistDML183	2	6	0	1	0	0	1	2
NistWeather	2	9	5	0	2	2	0	9
NistXTS748	1	3	1	0	1	0	1	3
NistXTS749	2	7	1	1	3	2	0	7
Person	1	5	1	0	5	1	0	7

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction	Testing Technique	Empirical Study	Conclusion
00	00	00000	0
Configuration			

Schema	T _{ables}	Columns	Ch _{ecks}	Fo _{reign keys}	Not Nulls	Primary _{Keys}	U _{niques}	^T otal _{Constraints}
Products	3	9	4	2	5	3	0	14
Residence	2	6	3	1	2	2	0	8
Risklt	13	56	0	10	15	11	0	36
UnixUsage	8	32	0	7	9	7	0	23
Usda	10	67	0	0	30	0	0	30

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction	Testing Technique	Empirical Study	Conclusion
00	00	00000	0
Configuration			

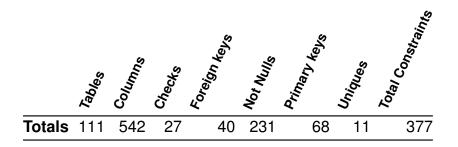
Schema	Tables	Columns	Ch _{ecks}	Fo _{reign keys}	Not Nulls	Primary _{keys}	Uniques	^T otal Constraints
Products	3	9	4	2	5	3	0	14
Residence	2	6	3	1	2	2	0	8
Risklt	13	56	0	10	15	11	0	36
UnixUsage	8	32	0	7	9	7	0	23
Usda	10	67	0	0	30	0	0	30

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction	Testing Technique	Empirical Study	Conclusion
00	00	00000	0
Configuration			


Schema	T _{ables}	Columns	Ch _{ecks}	Fo _{reign keys}	Not Nulls	Primary _{Keys}	U _{niques}	^T otal _{Constraints}
Products	3	9	4	2	5	3	0	14
Residence	2	6	3	1	2	2	0	8
Risklt	13	56	0	10	15	11	0	36
UnixUsage	8	32	0	7	9	7	0	23
Usda	10	67	0	0	30	0	0	30

Kapfhammer, McMinn, and Wright

March 19, 2013

6

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000	00000	0
Configuration			

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction
00
00
Configuration

Empirical Study

Conclusion

0

Data Generation Techniques

DBMonster

Kapfhammer, McMinn, and Wright

March 19, 2013

Configuration

Testing Technique

Empirical Study

Conclusion

0

Data Generation Techniques

DBMonster

SchemaAnalyst

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	

Configuration

Testing Technique

Empirical Study

Conclusion

0

Data Generation Techniques

DBMonster

SchemaAnalyst HSQLDB ✓ SQLite ✓ Postgres ✓

Kapfhammer, McMinn, and Wright

March 19, 2013

Configuration

Testing Technique

Empirical Study

Conclusion

0

Data Generation Techniques

DBMonster

SchemaAnalyst HSQLDB ✓ SQLite ✓ Postgres ✓

Kapfhammer, McMinn, and Wright

March 19, 2013

Configuration

Testing Technique

Empirical Study

Conclusion

0

Data Generation Techniques

DBMonster HSQLDB X SQLite X SchemaAnalyst HSQLDB ✓ SQLite ✓ Postgres ✓

Kapfhammer, McMinn, and Wright

Search-Based Testing of Relational Schema Integrity Constraints Across Multiple Database Management Systems

March 19, 2013

Configuration

Testing Technique

Empirical Study

Conclusion

0

Data Generation Techniques

DBMonster HSQLDB ✗ SQLite ✗ Postgres ✓

SchemaAnalyst HSQLDB ✓ SQLite ✓ Postgres ✓

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Constraint Coverage Results

Schema	AVM (%)	DBMonster (%)
Flights	100.0	70.0
FrenchTowns	100.0	70.0
Inventory	100.0	75.0
lso3166	100.0	50.0
JWhoisServer	100.0	50.0

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Constraint Coverage Results

Schema	AVM (%)	DBMonster (%)
Flights	100.0	70.0
FrenchTowns	100.0	70.0
Inventory	100.0	75.0
lso3166	100.0	50.0
JWhoisServer	100.0	50.0

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Constraint Coverage Results

Schema	AVM (%)	DBMonster (%)
NistDML181	100.0	75.0
NistDML182	100.0	50.0
NistDML183	100.0	100.0
NistXTS748	100.0	72.2
NistXTS749	100.0	21.4

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Constraint Coverage Results

Schema	AVM (%)	DBMonster (%)
NistDML181	100.0	75.0
NistDML182	100.0	50.0
NistDML183	100.0	100.0
NistXTS748	100.0	72.2
NistXTS749	100.0	21.4

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Constraint Coverage Results

Schema	AVM (%)	DBMonster (%)
NistDML181	100.0	75.0
NistDML182	100.0	50.0
NistDML183	100.0	100.0
NistXTS748	100.0	72.2
NistXTS749	100.0	21.4

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Constraint Coverage Results

Schema	AVM (%)	DBMonster (%)
Residence	100.0	62.5
RiskIt	100.0	4.1
Products	96.4	59.3
UnixUsage	97.8	59.3
Usda	100.0	50.0

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Constraint Coverage Results

Schema	AVM (%)	DBMonster (%)
Residence	100.0	62.5
RiskIt	100.0	4.1
Products	96.4	59.3
UnixUsage	97.8	59.3
Usda	100.0	50.0

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Constraint Coverage Results

Schema	AVM (%)	DBMonster (%)
Residence	100.0	62.5
RiskIt	100.0	4.1
Products	96.4	59.3
UnixUsage	97.8	59.3
Usda	100.0	50.0

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

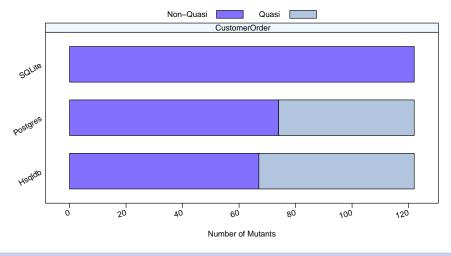
Testing Technique

Empirical Study

Conclusion

0

Constraint Coverage Results

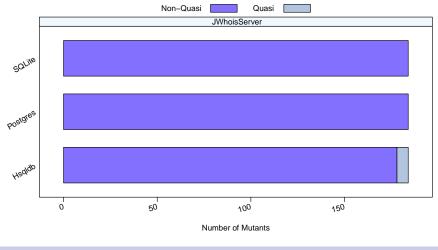

Schema	AVM (%)	DBMonster (%)
Residence	100.0	62.5
Risklt	100.0	4.1
Products	96.4	59.3
UnixUsage	97.8	59.3
Usda	100.0	50.0

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00	0000	00 0000	0
Results Analysis			

Quasi-Mutant Results

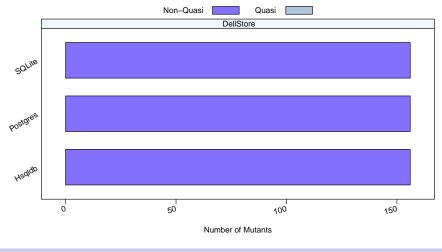


Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00	0000	00 00000	0
Results Analysis			

Quasi-Mutant Results



Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00 00	0000	00 0000	0
Results Analysis			

Quasi-Mutant Results

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Summary: Quasi-Mutant Results

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Summary: Quasi-Mutant Results

Kapfhammer, McMinn, and Wright

March 19, 2013

Results Analysis

Testing Technique

Empirical Study

Conclusion

0

Summary: Quasi-Mutant Results

Some

None

Some

Few quasi-mutants means that the mutation scores are good effectiveness indicators

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	

Testing Technique

Empirical Study

Conclusion

0

Results Analysis

Mutation Score Results

DBMonster

SchemaAnalyst

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	
Results Analysis	

Testing Technique

Empirical Study

Conclusion

0

Mutation Score Results

DBMonster

JWhoisServer

DBI=300, *M*_D = 0.2

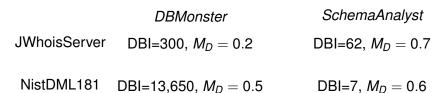
SchemaAnalyst

DBI=62, $M_D = 0.7$

Kapfhammer, McMinn, and Wright

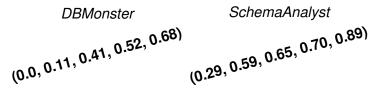
March 19, 2013

Introduction	Testing Technique 0000 00	Empirical Study
Results Analysis		


Conclusion

0

Mutation Score Results



Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusio
00	০০০০	○○	
00	০০	○○○●○	
Results Analysis			

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction oo oo	Testing Technique	Empirical Study ○○ ○○○●○	Conclus
Results Analysis			

D DBMonster crashes for six schemas! CustomerOrder Flights NistDML182 NistXTS748 SchemaAnalyst DBMonster (0.0, 0.11, 0.41, 0.52, 0.68) (0.29, 0.59, 0.65, 0.70, 0.89) Person Risklt

Kapfhammer, McMinn, and Wright

March 19, 2013

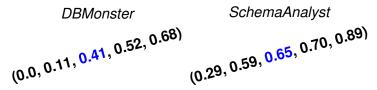
Introduction oo oo	Testing Technique	Empirical Study ○○ ○○○●○	Conclus
Results Analysis			

D DBMonster crashes for six schemas! CustomerOrder Flights NistDML182 NistXTS748 SchemaAnalyst DBMonster (0.0, 0.11, 0.41, 0.52, 0.68) (0.29, 0.59, 0.65, 0.70, 0.89) Person Risklt

Kapfhammer, McMinn, and Wright

March 19, 2013

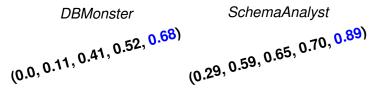
Introduction	Testing Technique	Empirical Study ○○ ○○○●○	Conclus o
Results Analysis			


D DBMonster crashes for six schemas! CustomerOrder Flights NistDML182 NistXTS748 SchemaAnalyst DBMonster (0.0, 0.11, 0.41, 0.52, 0.68) (0.29, 0.59, 0.65, 0.70, 0.89) Person **Risklt**

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusio
00	০০০০	○○	
00	০০	○○○●○	
Results Analysis			



Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusio
00	০০০০	○○	
00	০০	○○○●○	
Results Analysis			

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction oo oo	Testing Technique	Empirical Study ○○ ○○●○
Results Analysis		

Conclusion

0

Mutation Score Results

SchemaAnalyst's mutation score is higher than DB-Monster's for 96% of the schemas

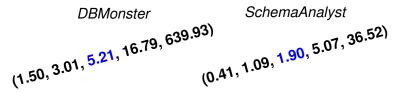
SchemaAnalyst DBMonster (0.29, 0.59, 0.65, 0.70, 0.89) (0.0, 0.11, 0.41, 0.52, 0.68)

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00	0000	00 0000	0
Results Analysis			

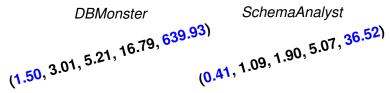
DBMonster


SchemaAnalyst

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction oo oo	Testing Technique	Empirical Study	Conclusion
oo Results Analysis	00	00000	0
noodilo / indifolo			



Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	Testing Technique	Empirical Study	Conclusion
00	0000	00 0000	0
Results Analysis			

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction 00 00	Testing Technique	Empirical Study ○○ ○○○○●	Conclusion o
Results Analysis			

SchemaAnalyst exhibits competitive data generation times that are less variable

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	

Summary

Testing Technique

Empirical Study

Conclusion

•

Important Contributions

This paper presents *SchemaAnalyst*, a search-based system for testing the complex integrity constraints in relational schemas

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	

Summary

Testing Technique

Empirical Study

Conclusion

•

Important Contributions

This paper presents *SchemaAnalyst*, a search-based system for testing the complex integrity constraints in relational schemas

The empirical study demonstrates that *Schema-Analyst*'s efficiency is competitive with *DBMonster*'s

Kapfhammer, McMinn, and Wright

March 19, 2013

Summary

Testing Technique

Empirical Study

Conclusion

•

Important Contributions

This paper presents *SchemaAnalyst*, a search-based system for testing the complex integrity constraints in relational schemas

The empirical study demonstrates that *Schema-Analyst*'s efficiency is competitive with *DBMonster*'s

SchemaAnalyst almost always covers 100% of the constraints in the 25 chosen relational schemas

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	
Summary	

Testing Technique

Empirical Study

Conclusion

•

Important Contributions

This paper presents *SchemaAnalyst*, a search-based system for testing the complex integrity constraints in relational schemas

The empirical study demonstrates that *Schema-Analyst*'s efficiency is competitive with *DBMonster*'s

SchemaAnalyst almost always covers 100% of the constraints in the 25 chosen relational schemas

SchemaAnalyst's mutation score is higher than DBMonster's for 96% of the schemas

Kapfhammer, McMinn, and Wright

March 19, 2013

Introduction	
00	
00	

Summary

Testing	Technique
0000	
00	

Empirical Study

Conclusion

•

Important Contributions

This paper presents *SchemaAnalyst*, a search-based system for testing the complex integrity constraints in relational schemas

The empirical study demonstrates that *Schema-Analyst*'s efficiency is competitive with *DBMonster*'s

SchemaAnalyst almost always covers 100% of the constraints in the 25 chosen relational schemas

SchemaAnalyst's mutation score is higher than DBMonster's for 96% of the schemas

http://www.schemaanalyst.org

Kapfhammer, McMinn, and Wright

March 19, 2013