
Automatic Program Instrumentation

to the Rescue!

Gregory M. Kapfhammer
Department of Computer Science

Allegheny College

Mary Lou Soffa
Department of Computer Science

University of Virginia

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 1/15



What is My Program Doing?

Contribution: An instrumentation framework to support

testing, analysis, debugging, and understanding

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 2/15



Potential Probe Locations

Program and Test Suite

Java 
 Virtual Machine

Operating System

Database Manager

Java 
 Virtual Machine

Operating System

JDBC Driver

Instrumentation probes can be placed in many locations

How can we “best” capture the behavior of a program?

Is it possible to automatically introduce the probes?

What tools already exist?

What approach is the most efficient?

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 3/15



Understanding Static Instrumentation

Insert the probes into the source code or

bytecode

Instrumentation occurs before program

execution

Less flexible if a program regularly changes

What is the impact on space overhead?

Aspect-oriented programming versus

bytecode instrumentation

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 4/15



Dynamic Instrumentation

Program
Stack Native Code Cache

Fast?Interpreter?
Machine
Virtual

JIT? Adaptive?

Class Loader
Heap

methodA

testOne

Input Output

Byte Code

P

Perform dynamic instrumentation at established interface(s)
Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 5/15



Constructing Dynamic Call Trees

B B

G

G

H

I

H

A

C F

D E

Number of Nodes = 13, Number of Edges = 12

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 6/15



Using Calling Context Trees

B

G

H

I

A

C F

D E

Number of Nodes = 9, Number of Edges = 10

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 7/15



Static Instrumentation Time

FF PI RM ST TM GB All
Application

2

4

6

8

10

S
t
a
t
i
c

I
n
s
t
r
u
m
e
n
t
a
t
i
o
n

T
i
m
e

Hsec
L

FF PI RM ST TM GB All

4.391 4.404 4.396 4.394

5.169
5.583

8.687

Instrumentation never takes longer than nine seconds

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 8/15



Space Overhead of the Instrumentation

ZIP GZIP PACK
Compression Technique HTM L

10000

20000

30000

40000

50000

A
p
p
l
i
c
a
t
i
o
n

S
i
z
e

Hbyte
s

L ZIP GZIP PACK

14582
11424

6058

48887
45730 45650

A As

Increase in the number of bytecodes is substantial
Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 9/15



Size of the Instrumented Applications

Compr Tech Before Instr (bytes) After Instr (bytes)

None 29275 887609
Zip 15623 41351

Gzip 10624 35594
Pack 5699 34497

Average static size across all case study applications

Compressed the bytecodes with general purpose techniques

Specialized compressor nicely reduces space overhead

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 10/15



Size of the Instrumentation Probes

Compression Technique Probe Size (bytes)

None 119205
Zip 40017

Gzip 34982
Pack 35277

420% average increase in space overhead!

Why? Reflection vs. extra bytecode instructions

Is this increase in space overhead acceptable?

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 11/15



Static and Dynamic Time Overhead

Norm Sta -CCT Sta -DCT Dyn -CCT Dyn -DCT
Instrumentation Technique - Tree Type H TM L

2

4

6

8

10

12

14

T
C
M

T
i
m
e

Hsec
L

Norm Sta -CCT Sta -DCT Dyn -CCT Dyn -DCT

6.933

8.02

8.796

11.245
11.916

What trends can you find in this graph?

Which tree and instrumentation technique would you pick?

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 12/15



Test Execution Time Overhead

Instr Tech Tree Type TCM Time (sec) Percent Increase (%)
Static CCT 7.44 12.5
Static DCT 8.35 26.1

Dynamic CCT 10.17 53.0
Dynamic DCT 11.0 66.0

Normal average testing time of 6.62 seconds

Which tree and instrumentation technique is most efficient?

Which configuration would you select?

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 13/15



Average Tree Storage Time

Tree Type Tree Representation Tree Storage Time (msec)

CCT Binary 144.9
DCT Binary 1011.72
CCT XML 408.17
DCT XML 2569.22

Strengths and weaknesses of tree representations

Is it ever better to store the tree in XML?

Which configuration would you use?

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 14/15



Conclusions and Future Work

Automatic program instrumentation can save the day!

A complete framework for recording call trees

Useful applications: test coverage monitoring,
performance analysis, regression test suite reduction

Characterizing the DCT and CCT for object-oriented
programs

Automatic visualization of method input and output

What are your suggestions?

I value your comments and participation!

Automatic Program Instrumentation to the Rescue!, RICSS, February 9, 2007 – p. 15/15


	What is My Program Doing?
	Potential Probe Locations
	Understanding Static Instrumentation
	Dynamic Instrumentation
	Constructing Dynamic Call Trees
	Using Calling Context Trees
	Static Instrumentation Time
	Space Overhead of the Instrumentation
	Size of the Instrumented Applications
	Size of the Instrumentation Probes
	Static and Dynamic Time Overhead
	Test Execution Time Overhead
	Average Tree Storage Time
	Conclusions and Future Work

