
Testing Database-Driven Applications:

Challenges and Solutions

Gregory M. Kapfhammer

Department of Computer Science

University of Pittsburgh

Department of Computer Science

Allegheny College

Mary Lou Soffa

Department of Computer Science

University of Pittsburgh

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 1/32

Outline

Introduction and Motivation

Testing Challenges

Database-Driven Applications

A Unified Representation

Test Adequacy Criteria

Test Suite Execution

Test Coverage Monitoring

Conclusions and Resources

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 2/32

Motivation

The Risks Digest, Volume 22, Issue 64, 2003

Jeppesen reports airspace boundary problems

About 350 airspace boundaries contained in Jeppesen

NavData are incorrect, the FAA has warned. The error

occurred at Jeppesen after a software upgrade when

information was pulled from a database containing

20,000 airspace boundaries worldwide for the March

NavData update, which takes effect March 20.

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 3/32

Testing Challenges

Should consider the environment in which software
applications execute

Must test a program and its interaction with a database

Database-driven application’s state space is
well-structured, but infinite (Chays et al.)

Need to show program does not violate database
integrity, where integrity = consistency + validity (Motro)

Must locate program and database coupling points that
vary in granularity

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 4/32

Testing Challenges

The structured query language’s (SQL) data
manipulation language (DML) and data definition
language (DDL) have different interaction
characteristics

Database state changes cause modifications to the
program representation

Different kinds of test suites require different
techniques for managing database state during testing

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 5/32

Testing Challenges

The many testing challenges include, but are not
limited to, the following:

Unified program representation

Family of test adequacy criteria

Efficient test coverage monitoring techinques

Intelligent approaches to test suite execution

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 6/32

Database-Driven Applications
P

m i

m j
Dl

Dk

R

R2

1

E F G H

A B C D

I

R3
J K L

Program P interacts with two relational
databases

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 7/32

Database Interaction Levels

Database Level

D1

P
Dn

A program can interact with a
database at different levels of
granularity

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 8/32

Database Interaction Levels

UserInfo

user_name

4

acct_lock

1 Brian Zorman

2 Robert Roos

3

card_number pin_number

Geoffrey Arnold

0

0

0

0

32142

41601

45322

56471

Marcus Bittman

Relation Level

P

D1

Dn

A program can interact with a
database at different levels of
granularity

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 8/32

Database Interaction Levels

UserInfo

user_name

4

acct_lock

1 Brian Zorman

2 Robert Roos

3

card_number pin_number

Geoffrey Arnold

0

0

0

0

32142

41601

45322

56471

Marcus Bittman

Record Level

P
n

D1

D

A program can interact with a
database at different levels of
granularity

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 8/32

Database Interaction Levels

UserInfo

4

acct_lock

1 Brian Zorman

2 Robert Roos

3

card_number pin_number

0

0

0

0

32142

41601

45322

56471

user_name

Attribute Level

Marcus Bittman

Geoffrey Arnold

P

D1

Dn

A program can interact with a
database at different levels of
granularity

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 8/32

Database Interaction Levels

UserInfo

4

acct_lock

1 Brian Zorman

2 Robert Roos

3

card_number pin_number

Geoffrey Arnold

0

0

0

0

32142

41601

45322

56471

user_name

Attribute Value Level

Marcus Bittman

P

D1

nD

A program can interact with a
database at different levels of
granularity

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 8/32

Database Interaction Points

Database interaction point Ir ∈ I corresponds to the
execution of a SQL DML statement

Consider a simplified version of SQL and ignore SQL
DDL statements (for the moment)

Interaction points are normally encoded within Java
programs as dynamically constructed Strings

select uses Dk, delete defines Dk, insert defines Dk,
update defines and/or uses Dk

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 9/32

Database Interaction Points (DML)

select A1, A2, . . . , Aq

from r1, r2, . . . , rm

where Q

delete from r

where Q

insert into r(A1, A2, . . . , Aq)
values(v1, v2, . . . , vq)

update r

set Al = F (Al)
where Q

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 10/32

Refined Database-Driven Application

P

m i

m j

R

R2

1

E F G H

A B C D

lD

kD

where
set J = 500
update

L < 1000

R3

select 1* from R

R2from)
selectwhere A < (avg(G)

I

R3
J K L

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 11/32

Test Adequacy Criteria

P violates a database Dk’s validity when it:

(1-v) inserts entities into Dk that do not reflect real
world

P violates a database Dk’s completeness when it:

(1-c) deletes entities from Dk that still reflect real
world

In order to verify (1-v) and (1-c), T must cause P to
define and then use entities within D1, . . . , Dn!

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 12/32

Data Flow Information

Interaction point: ‘‘UPDATE UserInfo SET
acct lock=1 WHERE card number=’’ +
card number + ‘‘;’’;

Database Level: define(BankDB)

Attribute Level: define(acct_lock) and
use(card_number)

Data flow information varies with respect to
the granularity of the database interaction

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 13/32

Database Entities

UserInfo user_name

4

acct_lock

1 Brian Zorman

2 Robert Roos

3

card_number pin_number

Marcus Bittman

Geoffrey Arnold

41601

45322

56471

32142

0

0

0

0

v rA (I) = { 32142 }1 Geoffrey Arnold 0, , . . . , ,

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 14/32

The DICFG: A Unified Representation

entry lockAccount

temp1 = parameter0:c_n

temp2 = LocalDatabaseEntity0:Bank

temp3 = LocalDatabaseEntity1:acct_lock

temp4 = LocalDatabaseEntity2:card_number

“Database-enhanced”
CFG for lockAccount

Define temporaries to
represent the
program’s interaction
at the levels of
database and attribute

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 15/32

The DICFG: A Unified Representation

exit

G

G G

G

r

r2

r 2

r 1

1

entry entry

exit

lockAccount

update_lock = m_connect.createStatement()

if(result_lock == 1)

completed = true

exit

D

qu_lck = "UPDATE UserInfo ..." + temp1 + ";"

use(temp4)

result_lock = update_lock.executeUpdate(qu_lck)

define(temp2)

A

Ir

define(temp3)

Database interaction

graphs (DIGs) are

placed before interaction

point Ir

Multiple DIGs can be

integrated into a single

CFG

String at Ir is

determined in a

control-flow sensitive

fashion

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 15/32

Test Adequacy Criteria

all−attribute−value−DUs

all−record−DUs all−attribute−DUs

all−relation−DUs all−database−DUs

Database interaction
association (DIA) involves the
def and use of a database
entity

DIAs can be located in the
DICFG with data flow analysis

all-database-DUs requires
tests to exercise all DIAs for all
of the accessed databases

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 16/32

Generating Test Requirements

Database Seeder Database

(P)
Test Adequacy Criterion

(C)
System Under Test

Test Case Specification

Relational Schema

Requirements
Test

Measured time and space overhead
when computing family of test adequacy
criteria

Modified ATM and mp3cd to contain
appropriate database interaction points

Soot 1.2.5 to calculate intraprocedural
associations

GNU/Linux workstation with kernel
2.4.18-smp and dual 1 GHz Pentium III
Xeon processors

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 17/32

Counting Associations and Definitions

D Rc Rl A Av
Database Granularity

0
250
500
750
1000
1250
1500
1750

A
s
s
o
c
&
D
e
f
C
o
u
n
t

D Rc Rl A Av

mp3cd HD
ATM HD
mp3cd DB
ATM DB

DIAs at attribute value level represent 16.8% of mp3cd’s and

9.6% of ATM’s total number of intraprocedural associations
– p. 18/32

Measuring Time Overhead

None D Rc Rl A Av
Database Granularity

22.5
25

27.5
30

32.5
35

37.5

S
y
s
t
e
m
T
i
m
e

HsecL
None D Rc Rl A Av

Time Overhead

mp3cd

ATM

Computing DIAs at the attribute value level incurs no more

than a 5 second time overhead
– p. 19/32

Measuring Average Space Overhead

None D Rc Rl A Av
Database Granularity

16
18
20
22
24
26
28
30

N
o
d
e
&
E
d
g
e
C
o
u
n
t

None D Rc Rl A Av

ÈEmp3ÈÈEatmÈÈNmp3ÈÈNatmÈ

mp3cd shows a more marked increase in the average

number of nodes and edges than ATM – p. 20/32

Measuring Maximum Space Overhead

None D Rc Rl A Av
Database Granularity

200
400
600
800
1000
1200
1400

N
o
d
e
&
E
d
g
e
C
o
u
n
t

None D Rc Rl A Av

ÈEmp3ÈÈEatmÈÈNmp3ÈÈNatmÈ

mp3cd shows a significantly greater maximum space

overhead than ATM
– p. 21/32

Automatic Representation Construction

Manual construction of DICFGs is not practical

Use extension of BRICS Java String Analyzer (JSA) to
determine content of String at Ir

Per-class analysis is inter-procedural and control flow
sensitive

Conservative analysis might determine that all
database entities are accessed

Include coverage monitoring instrumentation to track
DIGs that are covered during test suite execution

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 22/32

Tracking Covered DIGs and DIAs

DB P DIGr

m i

m j

DIGs

DIG #
1

DEF USE
{ ... } { ... }

q { ... } { ... }

1

1

2

2

TEST
{ ... }

{ ... }

COV?

DIG Coverage Table

DIA coverage can be tracked by recording which DIGs

within a DICFG were executed during testing

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 23/32

Types of Test Suites

T

T

∆

1

e

m1

∆1

e

∆ 0

me

∆e−1

Independent

∆

mT1 1

0

∆1

ε−1∆

Tε εm

ε∆

e∆

emTe

∆e

Partially Independent

T

T

∆

1

e

m1

∆1

e

∆ 0

me

∆e−1

Non-restricted

– p. 24/32

Test Suite Execution

Independent test suites can be executed by using
provided setup code to ensure that all ∆γ = ∆0

Non-restricted test suites simply allow state to accrue

Partially independent test suites must return to ∆ε after
Tε is executed by :

1. Re-executing all SQL statements that resulted in
the creation of ∆ε

2. Creating a compensating transaction to undo the
SQL statements executed by each test after Tε

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 25/32

Representation Extension

The execution of a SQL insert during testing requires
the re-creation of DICFG(s)

The SQL delete does not require re-creation because
we must still determine if deleted entity is ever used

DICFG re-creation only needed when database
interactions are viewed at the record or attribute-value
level

Representation extension ripples to other methods

DICFGs can be re-constructed after test suite has
executed, thus incurring smaller time overhead

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 26/32

Test Coverage Monitoring

For each tested method mi that interacts with a
database and each interaction point Ir that involves an
insert we must:

1. Update the DICFG

2. Re-compute the test requirements

We can compute the set of covered DIAs by consulting
the DIG coverage table

Test adequacy is : # covered DIAs / # total DIAs

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 27/32

Calculating Adequacy

mi mj

m
i

DIA
<def(e1), use(e1)>
<def(e2), use(e2)>

COV?

<def(e3), use(e3)>
<def(e4), use(e4)>

Test Requirements

DIA COV?
<def(e5), use(e5)>
<def(e6), use(e6)>
<def(e7), use(e7)>
<def(e8), use(e8)>
<def(e9), use(e9)>

<def(e10), use(e10)>

Test Requirements

m
j

Tf

cov(mi) = 2

4
cov(mj) = 4

6
cov(Tf) = 6

10

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 28/32

Related Work

Jin and Offutt and Whittaker and Voas have suggested that

the environment of a software system is important

Chan and Cheung transform SQL statements into C code

segments

Chays et al. and Chays and Deng have created the

category-partition inspired AGENDA tool suite

Neufeld et al. and Zhang et al. have proposed techniques

for database state generation

Dauo et al. focused on the regression testing of

database-driven applications

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 29/32

Conclusions

Must test the program’s interaction with the database

Many challenges associated with (1) unified program

representation, (2) test adequacy criteria, (3) test coverage

monitoring, (4) test suite execution

The DICFG shows database interactions at varying levels of

granularity

Unique family of test adequacy criteria to detect type (1)

violations of database validity and completeness

Intraprocedural database interactions can be computed from

a DICFG with minimal time and space overhead

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 30/32

Conclusions

Test coverage monitoring instrumentation supports the

tracking of DIAs executed during testing

Three types of test suites require different techniques to

manage the state of the database

SQL insert statement causes the re-creation of the

representation and re-computation of test requirements

Data flow-based test adequacy criteria can serve as the

foundation for automatically generating test cases and

supporting regression testing

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 31/32

Resources

Gregory M. Kapfhammer and Mary Lou Soffa. A Family of
Test Adequacy Criteria for Database-Driven Applications.
In FSE 2003.

Gregory M. Kapfhammer. Software Testing. CRC Press
Computer Science Handbook. June, 2004.

http://cs.allegheny.edu/˜gkapfham/research/diatoms/

Database drIvenApplicationT esting tOolModuleS , IBM T.J. Watson Research Center, May 14, 2004 – p. 32/32

http://cs.allegheny.edu/~gkapfham/research/diatoms/

	Outline
	Motivation
	Testing Challenges
	Testing Challenges
	Testing Challenges
	Database-Driven Applications
	Database Interaction Levels
	Database Interaction Levels
	Database Interaction Levels
	Database Interaction Levels
	Database Interaction Levels

	Database Interaction Points
	Database Interaction Points (DML)
	Refined Database-Driven Application
	Test Adequacy Criteria
	Data Flow Information
	Database Entities
	The DICFG: A Unified Representation
	The DICFG: A Unified Representation

	Test Adequacy Criteria
	Generating Test Requirements
	Counting Associations and Definitions
	Measuring Time Overhead
	Measuring Average Space Overhead
	Measuring Maximum Space Overhead
	Automatic Representation Construction
	Tracking Covered DIGs and DIAs
	Types of Test Suites
	Test Suite Execution
	Representation Extension
	Test Coverage Monitoring
	Calculating Adequacy
	Related Work
	Conclusions
	Conclusions
	Resources

