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Motivation

The Risks Digest, Volume 22, Issue 64, 2003

Jeppesen reports airspace boundary problems

About 350 airspace boundaries contained in Jeppesen

NavData are incorrect, the FAA has warned. The error

occurred at Jeppesen after a software upgrade when

information was pulled from a database containing

20,000 airspace boundaries worldwide for the March

NavData update, which takes effect March 20.
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Testing Challenges

Should consider the environment in which software
applications execute

Must test a program and its interaction with a database

Database-driven application’s state space is
well-structured, but infinite (Chays et al.)

Need to show program does not violate database
integrity, where integrity = consistency + validity (Motro)

Must locate program and database coupling points that
vary in granularity
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Testing Challenges

The structured query language’s (SQL) data
manipulation language (DML) and data definition
language (DDL) have different interaction
characteristics

Database state changes cause modifications to the
program representation

Different kinds of test suites require different
techniques for managing database state during testing
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Testing Challenges

The many testing challenges include, but are not
limited to, the following:

Unified program representation

Family of test adequacy criteria

Efficient test coverage monitoring techinques

Intelligent approaches to test suite execution
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Database-Driven Applications
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Program P interacts with two relational
databases
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Database Interaction Levels

Database Level

D1

P
Dn

A program can interact with a
database at different levels of
granularity
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Database Interaction Levels
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Database Interaction Points

Database interaction point Ir ∈ I corresponds to the
execution of a SQL DML statement

Consider a simplified version of SQL and ignore SQL
DDL statements (for the moment)

Interaction points are normally encoded within Java
programs as dynamically constructed Strings

select uses Dk, delete defines Dk, insert defines Dk,
update defines and/or uses Dk
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Database Interaction Points (DML)

select A1, A2, . . . , Aq

from r1, r2, . . . , rm

where Q

delete from r

where Q

insert into r(A1, A2, . . . , Aq)
values(v1, v2, . . . , vq)

update r

set Al = F (Al)
where Q
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Refined Database-Driven Application
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Test Adequacy Criteria

P violates a database Dk’s validity when it:

(1-v) inserts entities into Dk that do not reflect real
world

P violates a database Dk’s completeness when it:

(1-c) deletes entities from Dk that still reflect real
world

In order to verify (1-v) and (1-c), T must cause P to
define and then use entities within D1, . . . , Dn!
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Data Flow Information

Interaction point: ‘‘UPDATE UserInfo SET
acct lock=1 WHERE card number=’’ +
card number + ‘‘;’’;

Database Level: define(BankDB)

Attribute Level: define(acct_lock) and
use(card_number)

Data flow information varies with respect to
the granularity of the database interaction
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Database Entities
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The DICFG: A Unified Representation

entry lockAccount

temp1 = parameter0:c_n

temp2 = LocalDatabaseEntity0:Bank

temp3 = LocalDatabaseEntity1:acct_lock

temp4 = LocalDatabaseEntity2:card_number

“Database-enhanced”
CFG for lockAccount

Define temporaries to
represent the
program’s interaction
at the levels of
database and attribute
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The DICFG: A Unified Representation
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Test Adequacy Criteria

all−attribute−value−DUs

all−record−DUs all−attribute−DUs

all−relation−DUs all−database−DUs

Database interaction
association (DIA) involves the
def and use of a database
entity

DIAs can be located in the
DICFG with data flow analysis

all-database-DUs requires
tests to exercise all DIAs for all
of the accessed databases
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Generating Test Requirements

Database Seeder Database

(P)
Test Adequacy Criterion

(C)
System Under Test

Test Case Specification

Relational Schema

Requirements
Test

Measured time and space overhead
when computing family of test adequacy
criteria

Modified ATM and mp3cd to contain
appropriate database interaction points

Soot 1.2.5 to calculate intraprocedural
associations

GNU/Linux workstation with kernel
2.4.18-smp and dual 1 GHz Pentium III
Xeon processors
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Counting Associations and Definitions
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Measuring Time Overhead

None D Rc Rl A Av
Database Granularity

22.5
25

27.5
30

32.5
35

37.5

S
y
s
t
e
m
T
i
m
e

HsecL
None D Rc Rl A Av

Time Overhead

mp3cd

ATM

Computing DIAs at the attribute value level incurs no more

than a 5 second time overhead
– p. 19/32



Measuring Average Space Overhead
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Measuring Maximum Space Overhead
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Automatic Representation Construction

Manual construction of DICFGs is not practical

Use extension of BRICS Java String Analyzer (JSA) to
determine content of String at Ir

Per-class analysis is inter-procedural and control flow
sensitive

Conservative analysis might determine that all
database entities are accessed

Include coverage monitoring instrumentation to track
DIGs that are covered during test suite execution
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Tracking Covered DIGs and DIAs
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DIA coverage can be tracked by recording which DIGs

within a DICFG were executed during testing
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Types of Test Suites
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Test Suite Execution

Independent test suites can be executed by using
provided setup code to ensure that all ∆γ = ∆0

Non-restricted test suites simply allow state to accrue

Partially independent test suites must return to ∆ε after
Tε is executed by :

1. Re-executing all SQL statements that resulted in
the creation of ∆ε

2. Creating a compensating transaction to undo the
SQL statements executed by each test after Tε
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Representation Extension

The execution of a SQL insert during testing requires
the re-creation of DICFG(s)

The SQL delete does not require re-creation because
we must still determine if deleted entity is ever used

DICFG re-creation only needed when database
interactions are viewed at the record or attribute-value
level

Representation extension ripples to other methods

DICFGs can be re-constructed after test suite has
executed, thus incurring smaller time overhead
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Test Coverage Monitoring

For each tested method mi that interacts with a
database and each interaction point Ir that involves an
insert we must:

1. Update the DICFG

2. Re-compute the test requirements

We can compute the set of covered DIAs by consulting
the DIG coverage table

Test adequacy is : # covered DIAs / # total DIAs
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Calculating Adequacy
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Related Work

Jin and Offutt and Whittaker and Voas have suggested that

the environment of a software system is important

Chan and Cheung transform SQL statements into C code

segments

Chays et al. and Chays and Deng have created the

category-partition inspired AGENDA tool suite

Neufeld et al. and Zhang et al. have proposed techniques

for database state generation

Dauo et al. focused on the regression testing of

database-driven applications
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Conclusions

Must test the program’s interaction with the database

Many challenges associated with (1) unified program

representation, (2) test adequacy criteria, (3) test coverage

monitoring, (4) test suite execution

The DICFG shows database interactions at varying levels of

granularity

Unique family of test adequacy criteria to detect type (1)

violations of database validity and completeness

Intraprocedural database interactions can be computed from

a DICFG with minimal time and space overhead
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Conclusions

Test coverage monitoring instrumentation supports the

tracking of DIAs executed during testing

Three types of test suites require different techniques to

manage the state of the database

SQL insert statement causes the re-creation of the

representation and re-computation of test requirements

Data flow-based test adequacy criteria can serve as the

foundation for automatically generating test cases and

supporting regression testing
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Resources

Gregory M. Kapfhammer and Mary Lou Soffa. A Family of
Test Adequacy Criteria for Database-Driven Applications.
In FSE 2003.

Gregory M. Kapfhammer. Software Testing. CRC Press
Computer Science Handbook. June, 2004.

http://cs.allegheny.edu/˜gkapfham/research/diatoms/
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