
Teaching Distributed Systems to
Undergraduates: An Experience Report

Gregory M. Kapfhammer
(Geoffrey Arnold and Brian Zorman)

Sixth Annual Jini Community Meeting
Boston • June 17-20, 2002

Presentation Outline
• Introduction
• Instructor to Students: “Building distributed systems is hard!”
• Course and Performance Objectives
• A Sampling of Covered Material
• Homework Assignments: Read the literature!
• Laboratory Assignments: Jini and JavaSpaces!
• “Lessons Learned” from the Laboratories
• A Survey of Submitted Final Projects
• “The Next Time Around”: Teaching Distributed Systems Again!
• Concluding Remarks

Introduction

• He turned to the flyleaf of the
geography and read what he
had written there: himself, his
name, and where he was.
Stephen Dedalus, Class of
Elements, Clongowes Wood
College, Sallins, Country Kildare,
Ireland, Europe, the World, the
Universe.

James Joyce, A Portrait of the
Artist as a Young Man

• He turned to the PowerPoint
presentation and read what he
had written there: himself, his
name, and where he was.
Gregory M. Kapfhammer,
Department of Computer
Science, Allegheny College,
software testing and
engineering community, Jini
Community, Meadville,
Pennsylvania, United States, the
World, the Universe.

The First Day of Class

“ … When I think of formal scientific method an image comes to
mind of an enormous juggernaut, a huge bulldozer -- slow,
tedious, lumbering, laborious, but invincible. It takes twice as
long, five times as long, maybe a dozen times as long as
informal mechanic’s techniques, but you know in the end you’re
going to get it. … When you’ve hit a really tough one, tried
everything, racked your brain and nothing works, you know that
this time Nature has really decided to be difficult, you say,
‘Okay, Nature, that’s the end of the nice guy,’ and you crank up
the formal scientific method …”

Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

Distributed System Development Challenges

• Background Knowledge Required: potentially, you will already
need to be familiar with programming languages, operating systems,
networks, theory, and algorithms!

• It’s Hard to Learn How to Fly: you must overcome the many
“accidents” initially associated with configuring your development
environment, designing your first distributed system, implementing a
few services, and configuring the runtime environment!

• Fault Isolation Difficulties: finding simple bugs is hard for novitiates
because there are so many new factors to consider!

• Does this Ever Get Easier?: simple command-line errors can cause
strange behavior and even confuse the Instructor (momentarily, of
course)!

Course and Performance Objectives

• Course Objectives:
– Explore the principles and

paradigms associated with the
discipline of distributed systems

– Principles: understand the
basics of naming,
synchronization, consistency,
replication, fault tolerance and
other topics!

– Paradigms: become very
familiar with object-based
distributed systems.
Specifically, become
comfortable with the Jini
network technology and the
JavaSpaces object repository

• Student Performance
Objectives:
– Be aware of the challenges and

complexities associated with
the design, testing, and
implementation of distributed
systems

– Be familiar with the
fundamental concepts

– Develop a toolkit that can be
applied to the creation of
distributed systems

– Become aware of current
research and the open research
questions

Instructional Objectives
• Make course time much like a Socratic dialogue!
• Create exciting laboratories that enable students to explore the

Jini network technology and the JavaSpaces object repository
• Take a “gloves off” approach: allow students to grapple with all

of the challenges that initially face most Jini developers!
• Encourage students to keep “laboratory notebooks” that

describe the challenges, pitfalls, and solutions that they discover
during the completion of a laboratory

• Require that students read scholarly and “popular press” articles
that talk about the design, implementation, and testing of
distributed systems

Selected Reading Material
• Theory and Principles:

– Tanenbaum et al. Distributed
Systems: Principles and Paradigms

– Coulouris et al. Distributed Systems:
Concepts and Design

– Doreen L. Galli Distributed
Operating Systems

– Pankaj Jalote Fault Tolerance in
Distributed Systems

– Claudia Leopold Parallel and
Distributed Computing

– Nancy A. Lynch Distributed
Algorithms

– Tari and Bukhres Fundamentals of
Distributed Object Systems

– Albert Y.H. Zomaya (ed.) Parallel
and Distributed Computing
Handbook

• Java, Jini, and JavaSpaces:
– David Flanagan Java in a

Nutshell

– W. Keith Edwards Core Jini

– Freeman, Hupfer, Arnold
JavaSpaces Principles, Patterns,
and Practice

– Scott Oaks and Henry Wong
Jini in a Nutshell

– Jan Newmarch, Guide to JINI
Technologies

A Sampling of Covered Material

• Principles:
– Basics of Distributed

Systems: communication
protocols (FTP, HTTP, and
RMI), objects in distributed
systems, message-oriented and
loosely-coupled communication

– Processes: green and native
threads, light-weight processes,
client and server organization,
process migration and agents

– Names: name resolution and
closure, name space
implementation, removing
unreferenced entities

– Synchronization: time-based
synchronization, Lamport
timestamps and logical clocks,
global state and distributed
snapshots, leader election,
distributed transactions

– Consistency, Replication,
Fault Tolerance: availability
and reliability, Byzantine
failures, fail-stop and fail-silent
failures, TMR and N-version
programming, two-army
problem and Byzantine generals
problem, failure recovery
techniques

Homework Assignments

• Waldo et al. A Note on
Distributed Computing.
– How do you define a distributed

system?
– What are the really hard

problems that face this
discipline?

– Is it a “good thing” to always
be aware of the differences
between local and distributed
computing?

• RMI Documentation and Waldo
The End of Protocols.
– What are the differences

between local and remote
objects in Java?

– Is language independence an
important facet of a framework
that supports the
implementation of distributed
systems?

Homework Assignments (continued)

• Cukier et al. Fault Injection
Based on a Partial View of the
Global State of a Distributed
System.
– What is a fault injector? Why is

it difficult to build a fault
injector for distributed systems?

– How can you make a fault
injector that is as non-intrusive
as possible?

• Avizienis. The Methodology of
N-version Programming.
– How do you develop a software

system using an N-version
programming approach?

– What are the differences
between an N-version approach
and a recovery block approach?

– How is N-version programming
related to software fault
tolerance?

Laboratory Assignments
• Java Development

Refresher:
– Re-familiarize yourself with Java

compiler, virtual machine,
CLASSPATH settings, etc.

– Learn how to use CVS, our
version control system,
jwhich, and the Log4j logging
package

• Building Simple Jini-based
Distributed Systems:
– Collaboratively create a simple

“Hello World!” distributed
system in Jini

– Understand the hazards
associated with CLASSPATH
contamination

– Build a distributed
StackMachine interpreter

• Using JavaSpaces for
Distributed Service
Communication:
– Collaboratively create a simple

“Hello World!” distributed
system that uses JavaSpaces

– Refine the StackMachine so
that it uses JavaSpaces

• Benchmarking JavaSpaces
Implementations:
– Conduct experiments, using

Tonic, to evaluate the strengths
and weaknesses of JavaSpaces

Laboratory Assignments (continued)

• Using Federated Name
Spaces:
– Use the Federate class

written by Edwards to create an
association between two name
spaces

– Write a Jini client that is able to
use federated name spaces to
search for a desired Jini service

• Using Lookup Service
Tunnels:
– Use the TunnelService class

written by Edwards to create a
tunnel between two name
spaces

– Write a Jini client that is able to
use a name space that is
connected to a tunnel

– Experiment with the types of
services that can be “pushed”
through the tunnel

Lessons Learned from the Laboratories

• Some students never hurdled the accidental difficulties
associated with Jini-based distributed system development
– For example, some students always struggled with CLASSPATH

settings, HTTP servers and codebase settings, and RMI activation

• Once students had experienced the challenges associated with
getting Jini “out of the box,” they requested the provision of
tools to automate these tasks

• Some students forgot material from past laboratories and found
it difficult to transfer classroom “head knowledge” into
laboratory “development skills”

• The laboratory notebook was not mandatory. Thus, the
students that needed this tool the most often neglected it!

Submitted Final Projects

– Metacomputing:
• The Frugal Metacomputing

Environment
• Distributed Regression Testing

using the Frugal Metacomputer

• Literature Review and
Synthesis:
– High Throughput Computing

with Condor
– Loki: A Fault Injection System

• Implementation and
Analysis:
– Tuplespaces:

• Jini Transactions with
JavaSpaces

• Jini-Enabling TSpaces
• “Space Off”: Comparing

TSpaces and JavaSpaces
• Performance Analysis of

Outrigger and GigaSpaces

– Java Agents:
• Implementing Mobile Agents

with the Java Agent
DEvelopment Framework
(JADE)

Thoughts About “The Next Time Around”
• Ground more of the concepts in actual Java and Jini-based

implementations
– When talking about leader election, demo a working example of

the bully algorithm; when talking about agents, use an agent-
based program developed in JADE

• Make the laboratory notebook mandatory
– Using a Wiki Web (specifically, the Sqeak Wiki, or Swiki), it is very

simple to build useful laboratory notebooks
– The best students might find this requirement to be “busy work”,

but they will probably still benefit from recording their experiences
– Students that find laboratory sessions very challenging will be able

to use past laboratory notebooks as a resource

• After the first or second laboratory, provide tools that
automatically create a functional Jini runtime environment

Concluding Remarks
• Current distributed systems textbooks are generally very good
• An undergraduate curriculum must balance the treatment of principles

and paradigms
– An introduction to the basic concepts of distributed systems often takes

several weeks at the beginning of the semester
– Students normally struggle with finishing the laboratory and homework

assignments while still keeping up with reading
– Appealing to a student’s intuition seemed profitable: a formal treatment of

some algorithms and proof techniques was too time consuming

• Most students seemed to enjoy the usage of the Jini network
technology and the JavaSpaces object repository

• Jini network technology was perceived by some students as being a
“difficult” framework for creating distributed systems -- but none had
ever used CORBA, DCOM, or COM+ before!

Further Resources

• G. Kapfhammer Internet Site:
– http://cs.allegheny.edu/~gkapfham/

• G. Kapfhammer’s Current Courses, including Computer Science
490, Principles of Distributed Systems:
– http://cs.allegheny.edu:8080/gkapfham/8

• Jini in Academia Internet Site:
– http://www.ecs.soton.ac.uk/~ra00r/jinidemia/

