
Building a Distributed Genetic Algorithm with
the Jini Network Technology

Brian Zorman
(Gregory M. Kapfhammer and Robert Roos)

Sixth Annual Jini Community Meeting
Boston • June 17-20, 2002

Problem Analysis

• Genetic Algorithms:
– Pros: robust and efficient
– Cons: execution cost and Quality of Solution (QoS)

• Possible solution: how can we harness the benefits of
distributed computing frameworks?

• Can we reduce cost of execution and improve quality of solution
with a distributed genetic algorithm (DGA)?

Bridging the Gap: Distributed Genetic Algorithms

Genetic Algorithms:

1.) Execution cost

2.) Lack of diversity

Distributed Systems:

1.) Resource Sharing

2.) Concurrency

3.) Scalability

4.) Openness

Exploring Punctuated Equilibrium

• The theory of punctuated equilibrium:

– An isolated environment can reach a point of stability
– The injection of new individuals could cause rapid evolution

• Could we design a distributed system to simulate this theory?

• How can the Jini network technology and the JavaSpaces object
repository help us to build this distributed system?

Designing the Models

• Examined two popular models:
master-worker and island

• Chose combination of master-
worker and island models

– Master-worker: parallel
execution and simplicity

– Island model (punctuated
equilibrium): parallel
execution and additional
diversity

Master

Worker Worker. . .

I1

I2

I3

I5

I4

parents parents

evaluated
offspring

High Level Architecture: Entities in the “Simple” Model

DistributionSpace

DiversitySpace

RM1 RM2 RM3 RMn. . .
Initial Machine

“Simple” Model: Distribution Phase

DistributionSpace

DiversitySpace

RM1 RM2 RM3 RMn. . .
Initial Machine

“Simple” Model: Pre-migration

DistributionSpace

DiversitySpace

RM1 RM2 RM3 RMn. . .
Initial Machine

“Simple” Model: Migration

DistributionSpace

DiversitySpace

RM1 RM2 RM3 RMn. . .
Initial Machine

“Simple” Model: Post-convergence

DistributionSpace

DiversitySpace

RM1 RM2 RM3 RMn. . .
Initial Machine

Simple Model Performance Bottleneck

• No explicit synchronization between remote machines

• Potentially, each remote machine could migrate with JavaSpace
at the same time!

• In some sense, this causes each worker to “wait in line” in order
to perform migration!

• While each worker is waiting there is no computation!

• Designed “Complex” Distributed System Model (CDSM) in an
attempt to reduce this bottleneck

High Level Architecture: Entities in the “Complex” Model

Initial Machine DistributionSpace

MM1

MM2

MMn

MS1

MS2

MSn

RM1

RM2

RMn

.

.

.

.

.

.

.

.

.

“Complex” Model: Distribution Phase

Initial Machine DistributionSpace

MM1

MM2

MS1

MSn

RM1

RM2

.

.

.

.

.

.

MMn

MS2

RMn

.

.

.

“Complex” Model: Pre-migration

Initial Machine DistributionSpace

MM1

MM2

MMn

MS1

MS2

RM1

RM2

RMn

.

.

.
.
.
.

MSn

.

.

.

“Complex” Model: First Migration Phase

Initial Machine DistributionSpace

MM1

MM2

MMn

MS1

MS2

MSn

RM1

RM2

RMn

.

.

.

.

.

.

.

.

.

“Complex” Model: Subsequent Migration Phases

Initial Machine DistributionSpace

MM1

MM2

MMn

MS1

MS2

MSn

RM1

RM2

RMn

.

.

.

.

.

.

.

.

.

“Complex” Model: Post-convergence

Initial Machine DistributionSpace

MM1

MM2

MMn

MS1

MS2

MSn

RM1

RM2

RMn

.

.

.

.

.

.

.

.

.

“Complex” Model Observations

• Maintains the functionality of the “Simple” model

• Requires dedicated MigrationMachines and MigrationSpaces

• Explicit synchronization mechanism used so that chances of
more than one remote machine migrating with the same
JavaSpace at the same time is greatly reduced

• Multiple MigrationSpaces minimally reduce the overall diversity
that any given remote machine has access to; however, this
cost is small when compared to other gains!

Experimental Framework

• Goal: analyze the design and performance of the two models,
and then compare the best version to sequential GA

• Selected open source GA written in Java that “solves” the
Knapsack Problem
– Knapsack problem is provably NP-complete

• Knapsack Problem Statement: Given a set of weights and
knapsack capacity: find best combination of weights that fit
inside the knapsack

Testbench Description

• 8 testsets of increasing levels of
difficulty

• Range of weight values:
0 – 5000

• Number of weights:
500 – 1200

• Number of machines

– SDSM: {2,4,6,8}
• Requires RemoteMachines

– CDSM: {2,4,6,8}
• Requires RemoteMachines,

MigrationMachines, MigrationSpaces

• GA parameters:

– Termination condition: best
solution remains constant after 75
generations

– Crossover: at every generation

– Mutation: at every generation

– Migration: 30% of population
every 30 generations, starting at
generation 60

Measurements and General Observations

• Execution time: The CDSM reduces the execution time of the DGA
when compared to the SDSM. Generally, overall execution time
increases as we add machines to the CDSM.

• Computation–to–Communication ratio: CDSM increases this ratio
when compared to the SDSM. The addition of machines to the CDSM
reduces this ratio.

• Diversity: The potential for a higher quality solution increases as we
move from the SGA to the CDSM and then as we add more machines
to the CDSM.

• Quality of Solution: The QoS for the CDSM is always higher than the
SGA. Generally, the QoS is higher in the CDSM as we add machines.

• Generations–per–Second: The CDSM can compute more Gen/Sec
than the SDSM. Generally, adding more machines to the CDSM
increases the Gen/Sec.

SDSM vs. CDSM: Execution time

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000
1800000
2000000

2 4 6 8

SDSM
CDSM

SDSM vs. CDSM: Computation-to-Communication Ratio

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2 4 6 8

SDSM
CDSM

SDSM vs. CDSM: Generations/Second

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

2 4 6 8

SDSM
CDSM

CDSM vs. SGA: Quality of Solution

0
10
20
30
40
50
60
70
80
90

100

1 2 3 4 5 6 7 8

SGA
2 mach.
4 mach.
6 mach.
8 mach.

CDSM vs. SGA: Execution Time

0

100000

200000

300000

400000

500000

600000

700000

1 2 3 4 5 6 7 8

SGA
2 mach.
4 mach.
6 mach.
8 mach.

CDSM vs. SGA: Computation-to-Communication

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 3 4 5 6 7 8

2 mach.
4 mach.
6 mach.
8 mach.

CDSM vs. SGA: Population Diversity

0
500000

1000000
1500000
2000000
2500000
3000000
3500000
4000000
4500000
5000000

1 2 3 4 5 6 7 8

SGA
2 mach.
4 mach.
6 mach.
8 mach.

CDSM vs. SGA: Generations-per-Second

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8

SGA
2 mach.
4 mach.
6 mach.
8 mach.

Future Possibilities: Distributed GA Framework

• Potential advantages of a DGA framework:
– Could be integrated into existing Java GA frameworks
– Java provides GA portability across operating systems
– Jini and JavaSpaces offer openness, scalability, fault tolerance
– GA developers could easily distribute their GA just to “see what

happens”

• DGA framework would require an approach for automatically and
transparently starting and terminating remote workers

• Various users should be able to donate their resources; our DGA can
make use of “idle time” on various university machines

• Potentially, we could develop simple applet for visibility and learning

Concluding Remarks
• Investigated feasibility of using Jini and JavaSpaces to build a

distributed genetic algorithm

• Proposed, implemented, and empirically evaluated a simple and a
complex distributed system model (SDSM and CDSM)

• SDSM bottleneck was a serious concern that prompted the
investigation of a new model that removed JavaSpaces interaction
bottlenecks

• CDSM outperformed SGA in quality of solution, diversity, and
generations per second

• SGA only outperformed CDSM in execution time (mostly due to early
convergence)

