Building a Distributed Genetic Algorithm with
the Jini Network Technology

Brian Zorman
(Gregory M. Kapfhammer and Robert Roos)

Sixth Annual Jini Community Meeting
Boston e June 17-20, 2002

Department of Computer Science

Problem Analysis

Genetic Algorithms:
— Pros: robust and efficient
— Cons: execution cost and Quality of Solution (QoS)

Possible solution: how can we harness the benefits of
distributed computing frameworks?

Can we reduce cost of execution and improve quality of solution
with a distributed genetic algorithm (DGA)?

Allegheny

Bridging the Gap: Distributed Genetic Algorithms

punctieted By

Genetic Algorithms: Distributed Systems:
1.) Execution cost 1.) Resource Sharing
2.) Concurrency
3.) Scalability

4.) Openness

2.) Lack of diversity

Exploring Punctuated Equilibrium

The theory of punctuated equilibrium:

— An isolated environment can reach a point of stability
— The injection of new individuals could cause rapid evolution

Could we design a distributed system to simulate this theory?

How can the Jini network technology and the JavaSpaces object
repository help us to build this distributed system?

Department of Computer Science

Designing the Models

Examined two popular models:

master-worker and island

Chose combination of master-
worker and island models

— Master-worker: parallel
execution and simplicity

— Island model (punctuated
equilibrium): parallel
execution and additional
diversity

evaluated
offspring

parents

Department of Computer Science

High Level Architecture: Entities in the “Simple” Model

Department of Computer Science

“Simple” Model: Distribution Phase

Department of Computer Science

“Simple” Model: Pre-migration

Department of Computer Science

“"Simple” Model: Migration

Department of Computer Science

“Simple” Model: Post-convergence

Department of Computer Science

Simple Model Performance Bottleneck

No explicit synchronization between remote machines

Potentially, each remote machine could migrate with JavaSpace
at the same time!

In some sense, this causes each worker to “wait in line” in order
to perform migration!

While each worker is waiting there is no computation!

Designed “Complex” Distributed System Model (CDSM) in an
attempt to reduce this bottleneck

Department of Computer Science

High Level Architecture: Entities in the "Complex” Model

Department of Computer Science

“Complex” Model: Pre-migration

Department of Computer Science

“Complex” Model: First Migration Phase

Department of Computer Science

“Complex” Model: Post-convergence

#Eheny

f Computer Science

“Complex” Model Observations
e Maintains the functionality of the “Simple” model
e Requires dedicated MigrationMachines and MigrationSpaces

e Explicit synchronization mechanism used so that chances of
more than one remote machine migrating with the same
JavaSpace at the same time is greatly reduced

e Multiple MigrationSpaces minimally reduce the overall diversity
that any given remote machine has access to; however, this
cost is small when compared to other gains!

Experimental Framework

Goal: analyze the design and performance of the two models,
and then compare the best version to sequential GA

Selected open source GA written in Java that “solves” the
Knapsack Problem

— Knapsack problem is provably NP-complete

Knapsack Problem Statement: Given a set of weights and
knapsack capacity: find best combination of weights that fit
inside the knapsack

Department of Computer Science

Testbench Description

8 testsets of increasing levels of e GA parameters:
difficulty

Termination condition: best

Range of weight values: solution remains constant after 75
0 = 5000 generations

] Crossover: at every generation
Number of weights:

500 - 1200 Mutation: at every generation

Number of machines Migration: 30% of population
every 30 generations, starting at

generation 60
— SDSM: {2,4,6,8}

e Requires RemoteMachines

— CDSM: {2,4,6,8}
e Requires RemoteMachines,
MigrationMachines, MigrationSpaces

#lEBheny

f Computer Science

Measurements and General Observations

e Execution time: The CDSM reduces the execution time of the DGA
when compared to the SDSM. Generally, overall execution time
increases as we add machines to the CDSM.

e Computation—to—Communication ratio: CDSM increases this ratio
when compared to the SDSM. The addition of machines to the CDSM
reduces this ratio.

o Diversity: The potential for a higher quality solution increases as we
move from the SGA to the CDSM and then as we add more machines
to the CDSM.

e Quality of Solution: The QoS for the CDSM is always higher than the
SGA. Generally, the QoS is higher in the CDSM as we add machines.

e Generations—per—Second: The CDSM can compute more Gen/Sec
than the SDSM. Generally, adding more machines to the CDSM
increases the Gen/Sec.

Department of Computer Science

SDSM vs. CDSM: Execution time

2000000
1800000 -
1600000 -
1400000 -
1200000 -
1000000 -
800000

600000 -

400000

200000

0_

Department of Computer Science

SDSM vs. CDSM: Computation-to-Communication Ratio

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0

Department of Computer Science

CDSM vs. SGA: Quality of Solution

B SGA

B 2 mach.
[14 mach.
[0 6 mach.
E 8 mach.

Department of Computer Science

CDSM vs. SGA: Execution Time

700000

600000 -
500000 -

B SGA
400000 M 2 mach.

300000- []4 mach.
[0 6 mach.
200000 @ 8 mach.

100000

0_.

Department of Computer Science

CDSM vs. SGA: Computation-to-Communication

1.6
1.4+
1.2+

1- B 2 mach.
0.8 [J4 mach.
0.6- [0 6 mach.
B 8 mach.

0.4-
0.2-
0_

Department of Computer Science

CDSM vs. SGA: Population Diversity

5000000
4500000
4000000
3500000 -
3000000 1
2500000 -
2000000 -
1500000 -
1000000
500000
0_.

B SGA

B 2 mach.
[14 mach.
[0 6 mach.
E 8 mach.

Department of Computer Science

CDSM vs. SGA: Generations-per-Second

B SGA

B 2 mach.
[14 mach.
[0 6 mach.
E 8 mach.

#Eheny

f Computer Science

Future Possibilities: Distributed GA Framework

Potential advantages of a DGA framework:
— Could be integrated into existing Java GA frameworks
— Java provides GA portability across operating systems
— Jini and JavaSpaces offer openness, scalability, fault tolerance

— GA developers could easily distribute their GA just to “see what
happens”

e DGA framework would require an approach for automatically and
transparently starting and terminating remote workers

e Various users should be able to donate their resources; our DGA can
make use of “idle time” on various university machines

e Potentially, we could develop simple applet for visibility and learning

Department of Computer Science

Concluding Remarks

Investigated feasibility of using Jini and JavaSpaces to build a
distributed genetic algorithm

Proposed, implemented, and empirically evaluated a simple and a
complex distributed system model (SDSM and CDSM)

SDSM bottleneck was a serious concern that prompted the
investigation of a new model that removed JavaSpaces interaction
bottlenecks

CDSM outperformed SGA in quality of solution, diversity, and
generations per second

SGA only outperformed CDSM in execution time (mostly due to early
convergence)

