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Mutation Analysis is Expensive

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

} Original

if (b < a)

if (b <= a)

if (b >= a)

if (b != a)

if (b == a)

Many mutants can be
generated for large programs

Large programs include
comprehensive test suites

Executing the entire test suite for all
mutants in large programs is prohibitive!
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Use only non-redundant mutation operators
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Number of generated
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More than 410,000 gen-
erated mutants remaining

Executing all non-redundant
mutants is still prohibitive!
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Reduce Number of Executed Mutants

Exploit necessary conditions:

Mutants not covered (reached) cannot be detected

Determine covered mutants for the test suite

Only execute the covered mutants

Total reduction of executed
mutants of more than 50%

Mutation analysis runtime
still up to 13 hours

Further optimizations beyond the
reduction of mutants are necessary!
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Mutation Coverage Overlap

Overlap measures the similarity of a test case
with its enclosing test suite

Pair-wise comparison of test cases is infeasible

Definition: Overlap O(ti ,T), ti ∈ T

O(ti ,T) B

1, |Cov(ti)| = 0
|Cov(ti)∩Cov(T\ti)|

|Cov(ti)|
, |Cov(ti)| > 0

Most of the test cases exhibit high overlap:
Does test runtime correlate with overlap?
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Correlation of Test Runtime and Mutation Coverage
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Splitting Test Classes

Two splitting strategies

Split entire long-
running test class

High overhead and
coverage precision

Extract only long-
running test methods

Lower overhead and
coverage precision

Trade-off between overhead and precision:
Splitting based on threshold for test runtime
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Splitting strategies:
Extracting long test methods reduces the runtime by 29%

Splitting entire test classes increases the runtime by 27%

Splitting may increase runtime if:
Test suite has a very low mutation detection rate

Test methods exhibit huge mutation coverage overlap
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Empirical Results

Reordering:
Reordering decreases the runtime by 20%

Splitting strategies:
Extracting long test methods reduces the runtime by 29%

Splitting entire test classes increases the runtime by 27%

Splitting may increase runtime if:
Test suite has a very low mutation detection rate

Test methods exhibit huge mutation coverage overlap

Prioritizing test suites improves the efficiency
of mutation analysis by 29% on average!

29%
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efficiency
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Conclusions

Reduction of mutants:

Non-redundant operators reduce number of mutants by 27%

Test suite characteristics:

Most of the tests exhibit mutation coverage overlap

Notable difference in runtime of tests

Optimized workflow:

Exploits mutation coverage overlap and runtime differences

Further reduces total runtime of mutation analysis by 29%

Non-redundant operators and optimized workflow
implemented in the MAJOR mutation system


