
Using Non-Redundant Mutation Operators
and Test Suite Prioritization to

Achieve Efficient and Scalable Mutation Analysis

René Just1,2 & Gregory M. Kapfhammer3 & Franz Schweiggert2

1University of Washington, USA
2Ulm University, Germany
3Allegheny College, USA

23rd International Symposium on Software Reliability Engineering

November 28, 2012

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis Background

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

}

public int max(int a, int b){
int max = a;

if (b>=a){

max=b;
}
return max;

}

Mutation analysis assesses
the quality of a test suite

with artificial faults (mutants)

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis Background

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

}

public int max(int a, int b){
int max = a;

if (b>=a){

max=b;
}
return max;

}

Mutation analysis assesses
the quality of a test suite

with artificial faults (mutants)

Program Test suite

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis Background

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

}

public int max(int a, int b){
int max = a;

if (b>=a){

max=b;
}
return max;

}

Mutation analysis assesses
the quality of a test suite

with artificial faults (mutants)

Program Test suite

Generate
mutants

Mutants

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis Background

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

}

public int max(int a, int b){
int max = a;

if (b>=a){

max=b;
}
return max;

}

Mutation analysis assesses
the quality of a test suite

with artificial faults (mutants)

Program Test suite

Generate
mutants

Mutants

Original

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis Background

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

}

public int max(int a, int b){
int max = a;

if (b>=a){

max=b;
}
return max;

}

Mutation analysis assesses
the quality of a test suite

with artificial faults (mutants)

Program Test suite

Generate
mutants

Mutants

Original

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis Background

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

}

public int max(int a, int b){
int max = a;

if (b>=a){

max=b;
}
return max;

}

Mutation analysis assesses
the quality of a test suite

with artificial faults (mutants)

Program Test suite

Generate
mutants

Mutants

Contains a small
syntactic change

Original

Mutant

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis Background

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

}

public int max(int a, int b){
int max = a;

if (b>=a){

max=b;
}
return max;

}

Mutation analysis assesses
the quality of a test suite

with artificial faults (mutants)

Program Test suite

Generate
mutants

Mutants

Execute
mutants

Mutation
score

Contains a small
syntactic change

Original

Mutant

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis is Expensive

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

} Original

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis is Expensive

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

} Original

if (b < a)

if (b <= a)

if (b >= a)

if (b != a)

if (b == a)

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis is Expensive

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

} Original

if (b < a)

if (b <= a)

if (b >= a)

if (b != a)

if (b == a)

Many mutants can be
generated for large programs

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis is Expensive

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

} Original

if (b < a)

if (b <= a)

if (b >= a)

if (b != a)

if (b == a)

Many mutants can be
generated for large programs

Large programs include
comprehensive test suites

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Analysis is Expensive

public int max(int a, int b){
int max = a;

if (b>a){

max=b;
}
return max;

} Original

if (b < a)

if (b <= a)

if (b >= a)

if (b != a)

if (b == a)

Many mutants can be
generated for large programs

Large programs include
comprehensive test suites

Executing the entire test suite for all
mutants in large programs is prohibitive!

Introduction Reduction Characteristics Prioritization Conclusion

Overview: Efficient Mutation Analysis

Execute fewer mutants
fewer times

Introduction Reduction Characteristics Prioritization Conclusion

Overview: Efficient Mutation Analysis

Execute fewer mutants
fewer times

Mutant
reduction

Generate
fewer mutants

Execute
fewer mutants

Introduction Reduction Characteristics Prioritization Conclusion

Overview: Efficient Mutation Analysis

Execute fewer mutants
fewer times

Mutant
reduction

Generate
fewer mutants

Execute
fewer mutants

Test suite
prioritization

Test suite
characteristics

Reordering
and splitting

Introduction Reduction Characteristics Prioritization Conclusion

Overview: Efficient Mutation Analysis

Execute fewer mutants
fewer times

Mutant
reduction

Generate
fewer mutants

Execute
fewer mutants

27%

Test suite
prioritization

Test suite
characteristics

Reordering
and splitting

29%Empirical evaluation of 10 open-source
projects with 560,000 mutants

Introduction Reduction Characteristics Prioritization Conclusion

Reduction of Mutants

Execute fewer mutants
fewer times

Mutant
reduction

Generate
fewer mutants

Execute
fewer mutants

27% Empirical evaluation of 10 open-source
projects with 560,000 mutants

Introduction Reduction Characteristics Prioritization Conclusion

Reduce Number of Generated Mutants

Mutation operators may introduce redundancy:
Redundant mutants are subsumed by other mutants

a + b 7→ a - b (replace binary operator)
a + b 7→ a + (-b) (insert unary operator)

Use only non-redundant mutation operators
Avoid the generation of such subsumed mutants

Introduction Reduction Characteristics Prioritization Conclusion

Reduce Number of Generated Mutants

Mutation operators may introduce redundancy:
Redundant mutants are subsumed by other mutants

a + b 7→ a - b (replace binary operator)
a + b 7→ a + (-b) (insert unary operator)

Use only non-redundant mutation operators
Avoid the generation of such subsumed mutants

Number of generated
mutants reduced by 27%

Introduction Reduction Characteristics Prioritization Conclusion

Reduce Number of Generated Mutants

Mutation operators may introduce redundancy:
Redundant mutants are subsumed by other mutants

a + b 7→ a - b (replace binary operator)
a + b 7→ a + (-b) (insert unary operator)

Use only non-redundant mutation operators
Avoid the generation of such subsumed mutants

Number of generated
mutants reduced by 27%

More than 410,000 gen-
erated mutants remaining

Introduction Reduction Characteristics Prioritization Conclusion

Reduce Number of Generated Mutants

Mutation operators may introduce redundancy:
Redundant mutants are subsumed by other mutants

a + b 7→ a - b (replace binary operator)
a + b 7→ a + (-b) (insert unary operator)

Use only non-redundant mutation operators
Avoid the generation of such subsumed mutants

Number of generated
mutants reduced by 27%

More than 410,000 gen-
erated mutants remaining

Executing all non-redundant
mutants is still prohibitive!

Introduction Reduction Characteristics Prioritization Conclusion

Reduce Number of Executed Mutants

Exploit necessary conditions:

Mutants not covered (reached) cannot be detected

Determine covered mutants for the test suite

Only execute the covered mutants

Introduction Reduction Characteristics Prioritization Conclusion

Reduce Number of Executed Mutants

Exploit necessary conditions:

Mutants not covered (reached) cannot be detected

Determine covered mutants for the test suite

Only execute the covered mutants

Total reduction of executed
mutants of more than 50%

Introduction Reduction Characteristics Prioritization Conclusion

Reduce Number of Executed Mutants

Exploit necessary conditions:

Mutants not covered (reached) cannot be detected

Determine covered mutants for the test suite

Only execute the covered mutants

Total reduction of executed
mutants of more than 50%

Mutation analysis runtime
still up to 13 hours

Introduction Reduction Characteristics Prioritization Conclusion

Reduce Number of Executed Mutants

Exploit necessary conditions:

Mutants not covered (reached) cannot be detected

Determine covered mutants for the test suite

Only execute the covered mutants

Total reduction of executed
mutants of more than 50%

Mutation analysis runtime
still up to 13 hours

Further optimizations beyond the
reduction of mutants are necessary!

Introduction Reduction Characteristics Prioritization Conclusion

Optimized Workflow for Mutation Analysis

Execute fewer mutants
fewer times

Test suite
prioritization

Test suite
characteristics

Reordering
and splitting

29%Empirical evaluation of 10 open-source
projects with 560,000 mutants

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Test case t1:
5 seconds

Test case t2:
2 seconds

Test case t3:
1 second

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Test case t1:
5 seconds

1, 2, 3, 4, 5

Test case t2:
2 seconds

1, 3, 4, 5

Test case t3:
1 second

1, 2, 3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t2:
2 seconds

1, 3, 4, 5

1, 4

Test case t3:
1 second

1, 2, 3

3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t2:
2 seconds

1, 3, 4, 5

1, 4

Test case t3:
1 second

1, 2, 3

3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 t2 t3 :

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t2:
2 seconds

1, 3, 4, 5

1, 4

Test case t3:
1 second

1, 2, 3

3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 t2 t3 : 1 2 3 4 5

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t2:
2 seconds

1, 3, 4, 5

1, 4

Test case t3:
1 second

1, 2, 3

3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 t2 t3 : 1 2 3 4 5 3 4

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t2:
2 seconds

1, 3, 4, 5

1, 4

Test case t3:
1 second

1, 2, 3

3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 t2 t3 : 1 2 3 4 5 3 4 3

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t2:
2 seconds

1, 3, 4, 5

1, 4

Test case t3:
1 second

1, 2, 3

3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 t2 t3 : 1 2 3 4 5 3 4 3

t3 t2 t1 :

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t2:
2 seconds

1, 3, 4, 5

1, 4

Test case t3:
1 second

1, 2, 3

3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 t2 t3 : 1 2 3 4 5 3 4 3

t3 t2 t1 : 1 2 3

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t2:
2 seconds

1, 3, 4, 5

1, 4

Test case t3:
1 second

1, 2, 3

3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 t2 t3 : 1 2 3 4 5 3 4 3

t3 t2 t1 : 1 2 3 1 4 5

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Reordering

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t2:
2 seconds

1, 3, 4, 5

1, 4

Test case t3:
1 second

1, 2, 3

3

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 t2 t3 : 1 2 3 4 5 3 4 3

t3 t2 t1 : 1 2 3 1 4 5 2 5

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Splitting

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Splitting

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t ′1:
3 seconds

1, 2, 3, 4

1, 2

Test case t ′′1 :
2 seconds

2, 3, 4, 5

2, 5

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Splitting

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t ′1:
3 seconds

1, 2, 3, 4

1, 2

Test case t ′′1 :
2 seconds

2, 3, 4, 5

2, 5

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 : 1 2 3 4 5

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Splitting

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t ′1:
3 seconds

1, 2, 3, 4

1, 2

Test case t ′′1 :
2 seconds

2, 3, 4, 5

2, 5

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 : 1 2 3 4 5

t ′1 t ′′1 :

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Splitting

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t ′1:
3 seconds

1, 2, 3, 4

1, 2

Test case t ′′1 :
2 seconds

2, 3, 4, 5

2, 5

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 : 1 2 3 4 5

t ′1 t ′′1 : 1 2 3 4

Introduction Reduction Characteristics Prioritization Conclusion

Motivating Example for Splitting

Mutants:
1, 2, 3, 4, 5

Covered:

Detected:

Test case t1:
5 seconds

1, 2, 3, 4, 5

1, 2, 5

Test case t ′1:
3 seconds

1, 2, 3, 4

1, 2

Test case t ′′1 :
2 seconds

2, 3, 4, 5

2, 5

Once a mutant is detected, it is not executed again!

Executed mutants and total runtime:
t1 : 1 2 3 4 5

t ′1 t ′′1 : 1 2 3 4 3 4 5

Introduction Reduction Characteristics Prioritization Conclusion

Runtime Distribution of Tests within Test Suites

●

●
●●●●

●

●●●

●

●●
●
●

●

●

●

●

●
●●
●●●

●

●
●●●●●●●●
●●

●

●
●
●●●
●
●●●●●
●
●

●

●

●●●

●
●

● ●

●

●●
●●

●

●●●● ●●
●●●
●●●●
●

●

●

●●●●● ●●●●

●

●

●

●● ●●●●●●●●●●●●●●

trove chart itext math time lang jdom jaxen io num4j

0

5

10

15

20

Te
st

 r
un

tim
e

in
 s

ec
on

ds

Introduction Reduction Characteristics Prioritization Conclusion

Runtime Distribution of Tests within Test Suites

●

●
●●●●

●

●●●

●

●●
●
●

●

●

●

●

●
●●
●●●

●

●
●●●●●●●●
●●

●

●
●
●●●
●
●●●●●
●
●

●

●

●●●

●
●

● ●

●

●●
●●

●

●●●● ●●
●●●
●●●●
●

●

●

●●●●● ●●●●

●

●

●

●● ●●●●●●●●●●●●●●

trove chart itext math time lang jdom jaxen io num4j

0

5

10

15

20

Te
st

 r
un

tim
e

in
 s

ec
on

ds

Most tests have
short runtime

Introduction Reduction Characteristics Prioritization Conclusion

Runtime Distribution of Tests within Test Suites

●

●
●●●●

●

●●●

●

●●
●
●

●

●

●

●

●
●●
●●●

●

●
●●●●●●●●
●●

●

●
●
●●●
●
●●●●●
●
●

●

●

●●●

●
●

● ●

●

●●
●●

●

●●●● ●●
●●●
●●●●
●

●

●

●●●●● ●●●●

●

●

●

●● ●●●●●●●●●●●●●●

trove chart itext math time lang jdom jaxen io num4j

0

5

10

15

20

Te
st

 r
un

tim
e

in
 s

ec
on

ds

Most tests have
short runtime

A few long-
running outliers

Introduction Reduction Characteristics Prioritization Conclusion

Runtime Distribution of Tests within Test Suites

●

●
●●●●

●

●●●

●

●●
●
●

●

●

●

●

●
●●
●●●

●

●
●●●●●●●●
●●

●

●
●
●●●
●
●●●●●
●
●

●

●

●●●

●
●

● ●

●

●●
●●

●

●●●● ●●
●●●
●●●●
●

●

●

●●●●● ●●●●

●

●

●

●● ●●●●●●●●●●●●●●

trove chart itext math time lang jdom jaxen io num4j

0

5

10

15

20

Te
st

 r
un

tim
e

in
 s

ec
on

ds

Most tests have
short runtime

A few long-
running outliers

A few tests constitute most of the total runtime:
Reduce number of executions for these tests

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Coverage Overlap

Overlap measures the similarity of a test case
with its enclosing test suite

Pair-wise comparison of test cases is infeasible

Definition: Overlap O(ti ,T), ti ∈ T

O(ti ,T) B

1, |Cov(ti)| = 0
|Cov(ti)∩Cov(T\ti)|

|Cov(ti)|
, |Cov(ti)| > 0

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Coverage Overlap

Overlap measures the similarity of a test case
with its enclosing test suite

Pair-wise comparison of test cases is infeasible

Definition: Overlap O(ti ,T), ti ∈ T

O(ti ,T) B

1, |Cov(ti)| = 0
|Cov(ti)∩Cov(T\ti)|

|Cov(ti)|
, |Cov(ti)| > 0

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Coverage Overlap

Overlap measures the similarity of a test case
with its enclosing test suite

Pair-wise comparison of test cases is infeasible

Definition: Overlap O(ti ,T), ti ∈ T

O(ti ,T) B

1, |Cov(ti)| = 0
|Cov(ti)∩Cov(T\ti)|

|Cov(ti)|
, |Cov(ti)| > 0

Most of the test cases exhibit high overlap:
Does test runtime correlate with overlap?

Introduction Reduction Characteristics Prioritization Conclusion

Correlation of Test Runtime and Mutation Coverage

 0 1000 2000 3000 4000 5000 6000

Index of mutant in set of generated mutants

 0

 10

 20

 30

 40

 50

 60

In
d
e
x
 o

f
te

s
t
in

 o
ri
g
in

a
l
te

s
t
s
u
it
e

 0

 50

 100

 150

 200

 250

R
u
n
ti
m

e
 o

f
te

s
t
in

 m
ill

is
e
c
o
n
d
s

Introduction Reduction Characteristics Prioritization Conclusion

Correlation of Test Runtime and Mutation Coverage

 0 1000 2000 3000 4000 5000 6000

Index of mutant in set of generated mutants

 0

 10

 20

 30

 40

 50

 60

In
d
e
x
 o

f
te

s
t
in

 o
ri
g
in

a
l
te

s
t
s
u
it
e

 0

 50

 100

 150

 200

 250

R
u
n
ti
m

e
 o

f
te

s
t
in

 m
ill

is
e
c
o
n
d
s

Test case with
longest runtime

Introduction Reduction Characteristics Prioritization Conclusion

Correlation of Test Runtime and Mutation Coverage

 0 1000 2000 3000 4000 5000 6000

Index of mutant in set of generated mutants

 0

 10

 20

 30

 40

 50

 60

In
d
e
x
 o

f
te

s
t
in

 o
ri
g
in

a
l
te

s
t
s
u
it
e

 0

 50

 100

 150

 200

 250

R
u
n
ti
m

e
 o

f
te

s
t
in

 m
ill

is
e
c
o
n
d
s

Test case with
longest runtime

Overlapping
test cases

Introduction Reduction Characteristics Prioritization Conclusion

Correlation of Test Runtime and Mutation Coverage

 0 1000 2000 3000 4000 5000 6000

Index of mutant in set of generated mutants

 0

 10

 20

 30

 40

 50

 60

In
d
e
x
 o

f
te

s
t
in

 o
ri
g
in

a
l
te

s
t
s
u
it
e

 0

 50

 100

 150

 200

 250

R
u
n
ti
m

e
 o

f
te

s
t
in

 m
ill

is
e
c
o
n
d
s

Test case with
longest runtime

Overlapping
test cases

Reorder to exploit
mutation coverage overlap

Introduction Reduction Characteristics Prioritization Conclusion

Correlation of Test Runtime and Mutation Coverage

 0 1000 2000 3000 4000 5000 6000

Index of mutant in set of generated mutants

 0

 10

 20

 30

 40

 50

 60

In
d
e
x
 o

f
te

s
t
in

 o
ri
g
in

a
l
te

s
t
s
u
it
e

 0

 50

 100

 150

 200

 250

R
u
n
ti
m

e
 o

f
te

s
t
in

 m
ill

is
e
c
o
n
d
s

Test case with
longest runtime

Overlapping
test cases

Reorder to exploit
mutation coverage overlap

Large mutation
coverage

Introduction Reduction Characteristics Prioritization Conclusion

Correlation of Test Runtime and Mutation Coverage

 0 1000 2000 3000 4000 5000 6000

Index of mutant in set of generated mutants

 0

 10

 20

 30

 40

 50

 60

In
d
e
x
 o

f
te

s
t
in

 o
ri
g
in

a
l
te

s
t
s
u
it
e

 0

 50

 100

 150

 200

 250

R
u
n
ti
m

e
 o

f
te

s
t
in

 m
ill

is
e
c
o
n
d
s

Test case with
longest runtime

Overlapping
test cases

Reorder to exploit
mutation coverage overlap

Large mutation
coverage

Split test cases to increase
coverage precision

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Coverage of Test suites

test suite

class#1

method#1 ...

... ... class#m

... method#n

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Coverage of Test suites

test suite

class#1

method#1 ...

... ... class#m

... method#n

H
igherprecision

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Coverage of Test suites

test suite

class#1

method#1 ...

... ... class#m

... method#nLo
w

er
ov

er
he

ad
H

igherprecision

Introduction Reduction Characteristics Prioritization Conclusion

Mutation Coverage of Test suites

test suite

class#1

method#1 ...

... ... class#m

... method#nLo
w

er
ov

er
he

ad
H

igherprecision

Only split long-running test classes

Introduction Reduction Characteristics Prioritization Conclusion

Splitting Test Classes

Two splitting strategies

Introduction Reduction Characteristics Prioritization Conclusion

Splitting Test Classes

Two splitting strategies

Split entire long-
running test class

High overhead and
coverage precision

Introduction Reduction Characteristics Prioritization Conclusion

Splitting Test Classes

Two splitting strategies

Split entire long-
running test class

High overhead and
coverage precision

Extract only long-
running test methods

Lower overhead and
coverage precision

Introduction Reduction Characteristics Prioritization Conclusion

Splitting Test Classes

Two splitting strategies

Split entire long-
running test class

High overhead and
coverage precision

Extract only long-
running test methods

Lower overhead and
coverage precision

Trade-off between overhead and precision:
Splitting based on threshold for test runtime

Introduction Reduction Characteristics Prioritization Conclusion

Optimized workflow

Original
program

Generate
mutants

Set of non-
redundant
mutants

Introduction Reduction Characteristics Prioritization Conclusion

Optimized workflow

Original
program

Generate
mutants

Set of non-
redundant
mutants

Execute
test suite

Original
test suite

Introduction Reduction Characteristics Prioritization Conclusion

Optimized workflow

Original
program

Generate
mutants

Set of non-
redundant
mutants

Execute
test suite

Original
test suite

Runtime of
test cases

Mutation
coverage

Introduction Reduction Characteristics Prioritization Conclusion

Optimized workflow

Original
program

Generate
mutants

Set of non-
redundant
mutants

Execute
test suite

Original
test suite

Runtime of
test cases

Mutation
coverage

Order/split
test cases

Prioritized
test suite

Introduction Reduction Characteristics Prioritization Conclusion

Optimized workflow

Original
program

Generate
mutants

Set of non-
redundant
mutants

Execute
test suite

Original
test suite

Runtime of
test cases

Mutation
coverage

Order/split
test cases

Prioritized
test suite

Mutation
analysis

Introduction Reduction Characteristics Prioritization Conclusion

Example with Original Test Suite

 0

 0.2

 0.4

 0.6

 0.8

 1

M
u
ta

ti
o
n
 s

c
o
re

Original test suite

 0

 7

 14

 21

0 100 200 300 400 500 600 700 800

T
e
s
t-

ru
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

Total runtime in minutes

Introduction Reduction Characteristics Prioritization Conclusion

Example with Original Test Suite

 0

 0.2

 0.4

 0.6

 0.8

 1

M
u
ta

ti
o
n
 s

c
o
re

Original test suite

 0

 7

 14

 21

0 100 200 300 400 500 600 700 800

T
e
s
t-

ru
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

Total runtime in minutes

Total runtime of
test executing all
covered, yet not
killed, mutants

Introduction Reduction Characteristics Prioritization Conclusion

Example with Original Test Suite

 0

 0.2

 0.4

 0.6

 0.8

 1

M
u
ta

ti
o
n
 s

c
o
re

Original test suite

 0

 7

 14

 21

0 100 200 300 400 500 600 700 800

T
e
s
t-

ru
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

Total runtime in minutes

Total runtime of
test executing all
covered, yet not
killed, mutants

Introduction Reduction Characteristics Prioritization Conclusion

Example with Original Test Suite

 0

 0.2

 0.4

 0.6

 0.8

 1

M
u
ta

ti
o
n
 s

c
o
re

Original test suite

 0

 7

 14

 21

0 100 200 300 400 500 600 700 800

T
e
s
t-

ru
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

Total runtime in minutes

Total runtime of
test executing all
covered, yet not
killed, mutants

Reorder

Introduction Reduction Characteristics Prioritization Conclusion

Example with Original Test Suite

 0

 0.2

 0.4

 0.6

 0.8

 1

M
u
ta

ti
o
n
 s

c
o
re

Original test suite

 0

 7

 14

 21

0 100 200 300 400 500 600 700 800

T
e
s
t-

ru
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

Total runtime in minutes

Total runtime of
test executing all
covered, yet not
killed, mutants

ReorderSplit

Introduction Reduction Characteristics Prioritization Conclusion

Example with Prioritized Test Suite

 0

 0.2

 0.4

 0.6

 0.8

 1

M
u
ta

ti
o
n
 s

c
o
re

Prioritized test suite

 0

 7

 14

 21

0 100 200 300 400 500 600 700 800

T
e
s
t-

ru
n
ti
m

e
 i
n
 s

e
c
o
n
d
s

Total runtime in minutes

Introduction Reduction Characteristics Prioritization Conclusion

Empirical Results

Reordering:
Reordering decreases the runtime by 20%

Splitting strategies:
Extracting long test methods reduces the runtime by 29%

Splitting entire test classes increases the runtime by 27%

Splitting may increase runtime if:
Test suite has a very low mutation detection rate

Test methods exhibit huge mutation coverage overlap

Introduction Reduction Characteristics Prioritization Conclusion

Empirical Results

Reordering:
Reordering decreases the runtime by 20%

Splitting strategies:
Extracting long test methods reduces the runtime by 29%

Splitting entire test classes increases the runtime by 27%

Splitting may increase runtime if:
Test suite has a very low mutation detection rate

Test methods exhibit huge mutation coverage overlap

Prioritizing test suites improves the efficiency
of mutation analysis by 29% on average!

29%

Introduction Reduction Characteristics Prioritization Conclusion

Related Work

Reduction of generated mutants:
Sufficient mutation operators

Offutt et al., TOSEM’96
Namin et al., ICSE’08

Non-redundant mutation operators
Kaminski et al., AST’11
Just et al., Mutation’12

Mutation-based test suite optimization:
Test case prioritization

Elbaum et al. TSE’02
Do and Rothermel, TSE’06

Introduction Reduction Characteristics Prioritization Conclusion

Related Work

Reduction of generated mutants:
Sufficient mutation operators

Offutt et al., TOSEM’96
Namin et al., ICSE’08

Non-redundant mutation operators
Kaminski et al., AST’11
Just et al., Mutation’12

Mutation-based test suite optimization:
Test case prioritization

Elbaum et al. TSE’02
Do and Rothermel, TSE’06

Still contain
redundancies

Introduction Reduction Characteristics Prioritization Conclusion

Related Work

Reduction of generated mutants:
Sufficient mutation operators

Offutt et al., TOSEM’96
Namin et al., ICSE’08

Non-redundant mutation operators
Kaminski et al., AST’11
Just et al., Mutation’12

Mutation-based test suite optimization:
Test case prioritization

Elbaum et al. TSE’02
Do and Rothermel, TSE’06

Still contain
redundancies

Used in
empirical study

Introduction Reduction Characteristics Prioritization Conclusion

Related Work

Reduction of generated mutants:
Sufficient mutation operators

Offutt et al., TOSEM’96
Namin et al., ICSE’08

Non-redundant mutation operators
Kaminski et al., AST’11
Just et al., Mutation’12

Mutation-based test suite optimization:
Test case prioritization

Elbaum et al. TSE’02
Do and Rothermel, TSE’06

Still contain
redundancies

Used in
empirical study

Do not address
efficiency

Introduction Reduction Characteristics Prioritization Conclusion

Conclusions

Reduction of mutants:

Non-redundant operators reduce number of mutants by 27%

Test suite characteristics:

Most of the tests exhibit mutation coverage overlap

Notable difference in runtime of tests

Optimized workflow:

Exploits mutation coverage overlap and runtime differences

Further reduces total runtime of mutation analysis by 29%

Introduction Reduction Characteristics Prioritization Conclusion

Conclusions

Reduction of mutants:

Non-redundant operators reduce number of mutants by 27%

Test suite characteristics:

Most of the tests exhibit mutation coverage overlap

Notable difference in runtime of tests

Optimized workflow:

Exploits mutation coverage overlap and runtime differences

Further reduces total runtime of mutation analysis by 29%

Non-redundant operators and optimized workflow
implemented in the MAJOR mutation system

