
Using Conditional Mutation to Increase the
Efficiency of Mutation Analysis

René Just1 & Gregory M. Kapfhammer2 & Franz Schweiggert1

1Ulm University, Germany
2Allegheny College, USA

6th International Workshop on the Automation of Software Test
Waikiki, Honolulu, Hawaii, USA

May 23 - 24, 2011

Introduction Conditional Mutation Implementation Conclusion

Overview of the Presentation

Efficient
Mutation
Analysis

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of the Presentation

Efficient
Mutation
Analysis

Challenges

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of the Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of the Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of the Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of the Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Expressions
and Statements

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of the Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Expressions
and Statements

Compiler
Integrated

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of the Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Expressions
and Statements

Compiler
Integrated

Comprehensive
Empirical Study

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of the Presentation

Efficient
Mutation
Analysis

Challenges

Solutions

Conditional Mutation

Syntax Tree
Transformation

Expressions
and Statements

Compiler
Integrated

Comprehensive
Empirical Study

Efficient Technique - Fully Integrated into the Java 6 SE Compiler

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Methodically
inject small
syntactical
faults into

the program
under test

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

y = a - x;

y = a + x;

y = a / x;

if(b < a)

if(b != a)

if(b == a)

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Unbiased
and powerful
method for
assessing

oracles and
input values

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Overview of Mutation Analysis
public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}

=⇒

=⇒

Unbiased
and powerful
method for
assessing

oracles and
input values

Useful method
for fault seeding

during the
empirical study

of testing
techniques

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
Analysis

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests Results

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests Results

Individually Executing the
Mutants is Too Expensive

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Analysis Challenges

Mutant
Generation

Mutation
Operators

Program

Mutants

Often Yields a
Substantial Num-

ber of Mutants

High Time Over-
head for Generation

Mutation
AnalysisTests Results

Individually Executing the
Mutants is Too Expensive

Prior
Solutions?

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer

Sampling Selection

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Distributed Weak Mutation

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Do Faster

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Do Faster

Compiler
Integrated

Bytecode
Transformation

Mutant
Schemata

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Prior Work in Mutation Analysis

Improving Mutation Analysis Offutt and
Untch

Do Fewer Do Smarter

Do Faster

Higher Order
Mutation

Jia and
Harman

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation

Conditional Mutation

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Can be inte-
grated within
the compiler

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax

tree (AST)

Can be inte-
grated within
the compiler

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation

Conditional Mutation

Encapsulates all
mutants within
the same block

Transforms the
abstract syntax

tree (AST)

Stmt → Conditional Stmt
(if-then-else, switch)

Expr → Conditional Expr
(conditional operator ?:)

Can be inte-
grated within
the compiler

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Working Example

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

=⇒

=⇒

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Working Example

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

ASSIGN

IDENT

y

BINARY

∗

a x

=⇒

=⇒

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Working Example

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

ASSIGN

IDENT

y

BINARY

∗

a x

=⇒

=⇒

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Working Example

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

⇓

ASSIGN

IDENT

y

BINARY

∗

a x

=⇒

=⇒

ASSIGN

IDENT

y

COND-EXPR

THEN

BINARY

+

a x

COND

(M NO ==2)

ELSE

COND-EXPR

THEN

BINARY

-

a x

COND

(M NO ==1)

ELSE

BINARY

∗

a x

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation Algorithm

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

1 Define mutation operators
MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current
expression or statement is
affected by mutation

3 Apply mutation operators

Versatile approach, can be combined with prior solutions
Formal description and implementation details in the paper

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation Algorithm

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

1 Define mutation operators
MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current
expression or statement is
affected by mutation

3 Apply mutation operators

Versatile approach, can be combined with prior solutions
Formal description and implementation details in the paper

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation Algorithm

public int eval(int x){
int a=3, b=1, y;

y = a * x ;

y += b;
return y;

}

1 Define mutation operators
MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current
expression or statement is
affected by mutation

3 Apply mutation operators

Versatile approach, can be combined with prior solutions
Formal description and implementation details in the paper

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation Algorithm

public int eval(int x){
int a=3, b=1, y;

y = (M_NO==1)? a - x :
a * x ;

y += b;
return y;

}

1 Define mutation operators
MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current
expression or statement is
affected by mutation

3 Apply mutation operators

Versatile approach, can be combined with prior solutions
Formal description and implementation details in the paper

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation Algorithm

public int eval(int x){
int a=3, b=1, y;

y = (M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

1 Define mutation operators
MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current
expression or statement is
affected by mutation

3 Apply mutation operators

Versatile approach, can be combined with prior solutions
Formal description and implementation details in the paper

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation Algorithm

public int eval(int x){
int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

1 Define mutation operators
MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current
expression or statement is
affected by mutation

3 Apply mutation operators

Versatile approach, can be combined with prior solutions
Formal description and implementation details in the paper

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation Algorithm

public int eval(int x){
int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

1 Define mutation operators
MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current
expression or statement is
affected by mutation

3 Apply mutation operators

Versatile approach, can be combined with prior solutions
Formal description and implementation details in the paper

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conditional Mutation Algorithm

public int eval(int x){
int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

1 Define mutation operators
MOP(x ∗ y) = {x − y , x + y , x/y}

2 Determine whether current
expression or statement is
affected by mutation

3 Apply mutation operators

Versatile approach, can be combined with prior solutions
Formal description and implementation details in the paper

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Coverage

public int eval(int x){
int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Coverage

public int eval(int x){
int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

a * x ;

y += b;
return y;

}

Mutants not exe-
cuted cannot be killed

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Coverage

public int eval(int x){
int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

(M_NO==0 &&

COVERED(1,3))?

a * x : a * x ;

y += b;

return y;
}

Mutants not exe-
cuted cannot be killed

Determine covered
mutants with addi-

tional instrumentation

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Mutation Coverage

public int eval(int x){
int a=3, b=1, y;

y = (M_NO==3)? a / x :
(M_NO==2)? a + x :
(M_NO==1)? a - x :

(M_NO==0 &&

COVERED(1,3))?

a * x : a * x ;

y += b;

return y;
}

Mutants not exe-
cuted cannot be killed

Determine covered
mutants with addi-

tional instrumentation

Only execute and investi-
gate the covered mutants

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

MAJOR: Mutation Analysis in a Java Compiler

Configuration:
Common compiler options
Domain specific language (DSL)

http://www.mathematik.uni-ulm.de/sai/major

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

MAJOR: Mutation Analysis in a Java Compiler

Configuration:
Common compiler options
Domain specific language (DSL)

http://www.mathematik.uni-ulm.de/sai/major

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

MAJOR: Mutation Analysis in a Java Compiler

Configuration:
Common compiler options
Domain specific language (DSL)

http://www.mathematik.uni-ulm.de/sai/major

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

MAJOR: Mutation Analysis in a Java Compiler

Configuration:
Common compiler options
Domain specific language (DSL)

http://www.mathematik.uni-ulm.de/sai/major

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Performance Analysis

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20000 40000 60000 80000 100000 120000 140000

C
om

pi
le

r r
un

tim
e

in
 s

ec
on

ds

Number of mutants

apache ant
jfreechart

itext
java pathfinder
commons math
commons lang

numerics4j

Overhead for generating and compiling mutants is negligible

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Performance Analysis

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20000 40000 60000 80000 100000 120000 140000

C
om

pi
le

r r
un

tim
e

in
 s

ec
on

ds

Number of mutants

apache ant
jfreechart

itext
java pathfinder
commons math
commons lang

numerics4j

Overhead for generating and compiling mutants is negligible

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Performance Analysis
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

Runtime overhead is application dependent
Larger for CPU-bound applications

Small for I/O-bound applications

Even for large projects, applicable on commodity workstations

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Performance Analysis
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

Runtime overhead is application dependent
Larger for CPU-bound applications

Small for I/O-bound applications

Even for large projects, applicable on commodity workstations

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Performance Analysis
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

Runtime overhead is application dependent
Larger for CPU-bound applications

Small for I/O-bound applications

Even for large projects, applicable on commodity workstations

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Performance Analysis
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

Runtime overhead is application dependent
Larger for CPU-bound applications

Small for I/O-bound applications

Even for large projects, applicable on commodity workstations

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Performance Analysis
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

Runtime overhead is application dependent
Larger for CPU-bound applications

Small for I/O-bound applications

Even for large projects, applicable on commodity workstations

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Enabling Efficient Mutation Analysis

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Enabling Efficient Mutation Analysis

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conclusion

Conclusion:

Largest empirical study of mutation analysis to date
Mutant generation time reduced to a minimum
Mutation coverage provides runtime optimization
Versatilely applicable in every Java-based environment
Arbitrary conditions enable support for higher order mutation

Future Work:

Implement new mutation operators
Enhance the domain specific language

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Introduction Conditional Mutation Implementation Conclusion

Conclusion

Conclusion:

Largest empirical study of mutation analysis to date
Mutant generation time reduced to a minimum
Mutation coverage provides runtime optimization
Versatilely applicable in every Java-based environment
Arbitrary conditions enable support for higher order mutation

Future Work:

Implement new mutation operators
Enhance the domain specific language

Just & Kapfhammer & Schweiggert Ulm University, Allegheny College

Using Conditional Mutation to Increase the Efficiency of Mutation Analysis

Using Conditional Mutation to Increase the
Efficiency of Mutation Analysis

Thank you for your attention!

Questions?

http://www.mathematik.uni-ulm.de/sai/major

