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public int eval(int x){

int a=3, b=1, y;

y = a * x;

y += b;
return y;

}

public int max(int a, int b){
int max = a;

if(b>a){

max=b;
}

return max;
}
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}

1 Define mutation operators
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affected by mutation
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Formal description and implementation details in the paper
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Performance Analysis
Application Mutants Runtime of test suite Memory consumption

original instrumented original instrumented
wcs wcs+cov

aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

Runtime overhead is application dependent
Larger for CPU-bound applications

Small for I/O-bound applications

Even for large projects, applicable on commodity workstations
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aspectj 406,382 4.3 4.8 5.0 559 813
apache ant 60,258 331.0 335.0 346.0 237 293
jfreechart 68,782 15.0 18.0 23.0 220 303

itext 124,184 5.1 5.6 6.3 217 325
java pathfinder 37,331 17.0 22.0 29.0 182 217
commons math 67,895 67.0 83.0 98.0 153 225
commons lang 25,783 10.3 11.8 14.8 104 149

numerics4j 5,869 1.2 1.3 1.6 73 90

Runtime overhead is application dependent
Larger for CPU-bound applications

Small for I/O-bound applications

Even for large projects, applicable on commodity workstations
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Conclusion

Conclusion:

Largest empirical study of mutation analysis to date
Mutant generation time reduced to a minimum
Mutation coverage provides runtime optimization
Versatilely applicable in every Java-based environment
Arbitrary conditions enable support for higher order mutation

Future Work:

Implement new mutation operators
Enhance the domain specific language
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Using Conditional Mutation to Increase the
Efficiency of Mutation Analysis

Thank you for your attention!

Questions?

http://www.mathematik.uni-ulm.de/sai/major


