Automated and
Configurable
Programming Project
Checking with Chasten

Daniel Bekele, Jaclyn Pham, and Gregory M. Kapfhammer
May 15, 2025

What Problem Are We Solving?

e Students may struggle to write efficient, readable code
e Manual project review is time-consuming and error-prone
e Many courses face these challenges:
= Data structures
= Algorithm analysis
= Software engineering
e Existingtools focus on style, not semantic structure

e Regex is brittle, and AST tools are hard to prototype

@ Project Goal: Chasten enables scalable and structure-aware
feedback that effectively supports both instructors and students

PyCon Education Summit 2025

Avoid Time Complexity of O(n?)

1 # O(n) 1is acceptable 1 # 0(n2) is not okay

2 seen = set() 2 for i1 in range(len(items)):

3 for item in items: 3 for j in range(len(items)):

4 if item 1in seen: 4 if 1 1= 3

5 return True 5 and items[i] == items[]]:
6 seen.add(item) 6 return True

o @ Goal: Automatically scan the source code that students submit to
confirm that there are no inefficient looping constructs

o A Challenge: Linters like Ruff and Pylint don’t have rules to detect
nested control structures that either are or are not acceptable

o B4 Build: An extensible tool allowing instructors to scan for
arbitrary code patterns without detailed AST knowledge

PyCon Education Summit 2025

Chasten to the Rescue!

o £X Uses XPath to search Python’s AST
e [Rules written in simple YAML

e tg Structure-first, not just style

e 8 Outputsto JSON, CSV, or SQLite

@ Result: Instructors define checks once and use Chasten to easily
apply them at scale across all student submissions

- name: '"nested-loops"
code: "PERFOO1"
pattern: "//For[descendant::For]"
description: "Detects doubly nested for-loops (e.g., 0(nz))"

A WDNPRE

PyCon Education Summit 2025

Let’s Run Chasten!
Install the Tool

1 pipx install chasten # Install Chasten in venv
2 pipx list # Confirm installation
3 chasten --help # View available commands

Run Chasten

1 chasten analyze time-complexity-lab \

2 --config chasten-configuration \

3 --search-path time-complexity-lab \

4 --save-directory time-complexity-results \
5 --save

e Save results to a JSON file and produce console output

e Configure the return code for different detection goals

PyCon Education Summit 2025

Results from Running Chasten
Nested Loop Analysis

Check ID Check Name File Matches
PERF001 nested-loops analyze.py 1
PERFO01 nested-loops display.py 7
PERFO01 nested-loops main.py 0

i= Check ID > A unique short rule code (e.g., PERF001)

© Check Name > The rule name that matched (e.g., nested- loops)

D File > The Python file that the tool scanned (e.g., analyze.py)

[@ Matches > Number of times the pattern was detected in that file (e.g., 1 match)

PyCon Education Summit 2025

Limitations and Future Directions

e Limitations of the Chasten Tool

= O Doesn’t handle style, formatting, or type inference

= X Not optimized for fast use in continuous integration

s @ Pattern matches through use of XPath on Python’s AST
e Empirical Study of Chasten

= 83 Frequency of false positives or false negatives?

= % How do students respond to the tool’s feedback?

» & Differences in scores with varied feedback types?

PyCon Education Summit 2025

Key Takeaways

e /* Write declarative rules for AST-based code checks
e B2 Focus on bespoke code structure patterns in Python
e © Automated grading aligned with learning outcomes

e [:f: Generate data-rich insights into student code patterns

e Try out Chasten and contribute to its development!
= ® GitHub: https://github.com/AstuteSource/chasten
= <[> PyPI: https://pypi.org/project/chasten/

PyCon Education Summit 2025

https://github.com/AstuteSource/chasten
https://pypi.org/project/chasten/

