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Abstract—The island model for distributed genetic algorithms (GAs) is
a natural match for the master-worker paradigm in distributed computa-
tion. We explore the benefits and drawbacks of several distributed system
architectures in developing an implementation of a distributed GA that ex-
ploits the Jini and JavaSpace technologies. Our results, using the knapsack
problem as an illustration, show that there is an unavoidable price to pay
in terms of decreasing computation-to-communication ratios as a function
of instance size. However, we can diminish these effects by expanding the
number of JavaSpaces beyond those required for the obvious implemen-
tation. Our results also indicate that as the number of remote machines
increases the potential for a better solution also rises. Even though our dis-
tributed GAs did not always exploit this potential for a higher quality solu-
tion, we believe that the combination of Java, Jini, and JavaSpaces presents
avenues for easily distributing the computation of genetic algorithms.
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I. INTRODUCTION

HILE genetic algorithms (GAs) often perform better than
more traditional search methods, they also have flaws,

mainly expensive computation cost and poor solution quality
due to premature convergence [12]. A GA executed in a sin-
gle address space is likely to reach a point of equilibrium where
offspring produced are very similar to their parents. This lim-
ited diversity causes the GA to explore only a confined area of
the solution space, resulting in suboptimal solutions. A possible
response to this problem is to create an environment where the
GA can be run on several populations independently. In order
to avoid early convergence, individuals from the independent
populations can be merged with other populations in order to
preserve diversity.

We present a new implementation of distributed genetic algo-
rithms that uses Jini and JavaSpaces to improve the quality of
the solution by distributing the initial population for execution
across a range of machines. To demonstrate this, we add dis-
tribution functionality to an open source genetic algorithm for
solving the knapsack problem. Then we design a distributed sys-
tem model (DSM) using the Jini network technology and Java-
Spaces object repositories [9], [18]. Jini is the backbone of the
distributed system, and JavaSpaces provide a means of commu-
nication between machines in the system. We assess the qual-
ity of our design and implementation through a measurement
of the computation-to-communication ratio, quality of solution,
and diversity of the GA population. We compare the DSM to its
sequential counterpart (SGA) through measurements of execu-
tion time and quality of solution.

In Section II we describe genetic algorithms, the Jini network
technology, and the JavaSpaces object repository. Section III
describes the design and implementation of our distributed sys-
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tem model and our genetic algorithm. Section IV introduces the
knapsack problem and describes the metrics used in our eval-
uation procedure. In Section V, we present our experimental
results and compare our results against those of the SGA.

II. PRELIMINARIES

In this section we first give a brief description of some ge-
netic algorithm terminology and concepts. Then we describe
distributed systems, and conclude with details of the various
technologies used.

A. Genetic Algorithms

GAs are search heuristics for combinatorial optimization
problems [12]. They are best used in searching irregular prob-
lem spaces. In a GA, there are a number of elements called indi-
viduals or chromosomes that are made up of values called genes.
Each individual is assigned a fitness. Individuals are grouped
in a set of solutions called a population which evolves through
many generations. During each generation, randomly selected
individuals are combined and modified through a crossover op-
eration to produce offspring. With some predefined probabil-
ity, a mutation operation is performed on the offspring. If the
offspring’s fitness is above a specified threshold, it replaces an
individual with a lower fitness. This process is repeated until
some termination condition is achieved. A typical structure for
a genetic algorithm is shown in Algorithm 1.

Algorithm 1 Genetic Algorithm Procedure
procedure GA;
start
Create initial population;
repeat

Gather 2 individuals for crossover;
Apply crossover to individuals gathered;
Apply mutation according to mutation probability;
Update population according to fitness;

until Reach termination condition;
end GA

B. Distributed Systems and GAs

A distributed system can be defined as a system where the
information processing is distributed over several computers
rather than confined to a single machine. Coulouris et al., Som-
merville, and Tanenbaum et al. [6], [22], [24] have character-
ized distributed systems through consideration of the following
properties: resource sharing, openness, concurrency, scalability,
fault tolerance, and transparency.
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If we add a migration operation to the standard GA described
in Algorithm 1, then it could be executed in a distributed envi-
ronment. Migration consists of selecting individuals from the
GA population, sending them to another GA population which
is evolving in parallel, and then receiving different individuals
back from the other GA population. This type of resource shar-
ing can lead to a decrease in the execution time of a genetic
algorithm and an increase in the overall quality of solution. We
describe such a migration operation in Section III.

There have been several distributed implementations of ge-
netic algorithms [1], [4], [15], [19], [21], [23]. The most relevant
to this paper discusses the Jinetic tool created by Atienza et al.
[1]. Jinetic uses Jini network technology (but not JavaSpaces)
to build a distributed GA. Jinetic has each genetic operation and
even chromosomes set up as Jini services. This design choice
resulted in a large amount of communication overhead. We in-
troduce JavaSpace object repositories to provide for a more ef-
ficient and elegant solution, since they facilitate loosely coupled
communication between entities in a Jini federation [9].

C. Technologies

The technologies used in this paper are the Java-based Jini
network technology and JavaSpaces object repositories which
were developed to address the challenges posed by distributed
systems: complexity, security, manageability, and unpredictabil-
ity [9], [24].

C.1 Jini network technology

Jini is a set of application programming interfaces (APIs) and
runtime conventions that facilitate the creation of distributed
systems. The entities within these Jini-based distributed systems
communicate by Jini protocols. One way to facilitate this com-
munication is through Java Remote Method Invocation (RMI)
[13], [16]. RMI facilitates communication between remote ma-
chines by allowing references to objects to be held in other Java
virtual machines (JVM). Through these references, methods can
be executed on these objects and objects can be passed to these
methods. The major components of a Jini system are [18]:

� Jini lookup service (JLUS): The central organizing mecha-
nism for a Jini-based system. Services register with the lookup
service in order to make themselves known. Clients query the
lookup service in search of services they need.

� Jini client: An entity that can look up and retrieve a registered
service and invoke methods of the service.

� Jini service: An entity containing methods that may be of
use to some other Jini client or service, and that registers with
lookup services to provide access to those methods.

� Jini federation : A collection of clients and services all com-
municating through Jini protocols.

The combination of Jini and Java can turn a network of
heterogeneous computing entities into a homogeneous collec-
tion of clients and services that are associated with Java vir-
tual machines. Jini reduces the complexity of distributed sys-
tems by providing elegant ways to handle distribution concerns.
Through the usage of the Jini lookup service, it is easy for a
client to locate services that fit its particular needs. Jini also

provides an interface for interacting with the network topology,
which hides low-level details from the user. For a more detailed
discussion of the Jini network technology, please refer to [3] and
[18].

C.2 JavaSpaces

In order to effectively handle the communication between ma-
chines in a distributed environment, a Jini service called Java-
Spaces has been developed [9]. JavaSpaces not only aid in the
design of distributed environments, but also offer a mechanism
for persistence within a distributed environment. In other words,
an object can remain in a JavaSpace for any specified length
of time, even through system restarts. The JavaSpaces object
repository also provides a high-level coordination mechanism
for distributed systems by exploiting the familiar notion of a
shared memory [9].

JavaSpaces builds on the Jini substrate. It takes the form of a
Jini service within a federation and uses the Java features of re-
mote method invocation (RMI) and serialization to pass param-
eters between remote machines. While RMI gives the power of
sending objects across a network, serialization is used to ensure
that the objects passed across the network are in a form that can
be executed on a remote JVM [8].

JavaSpaces allow for services to communicate in a fashion
that does not require the direct remote service method invoca-
tion. The JLUS facilitates the search that a Jini service must
conduct in order to find an appropriate JavaSpace. Any system
can communicate with a JavaSpace, from anywhere, and at any-
time, as long as that system adheres to the protocols, making it
ideal for loosely coupled services [9]. JavaSpaces was designed
to be both simple and expressive. Its repository was designed to
hold a typed group of objects called Entry. The simple lookup
operations are read, take, and write. A read will return
an Entry from the JavaSpace that matches the template pro-
vided by the requesting party. A take will return an entry from
the JavaSpace, just as in a read, and also remove that Entry
from the JavaSpace. A write will simply write an Entry to
the JavaSpace [9]. Figure 1 describes the operations that are
provided by the JavaSpaces object repository.

write

read

take

Space

Objects

Local Objects

Fig. 1. An overview of JavaSpaces operations: read, write, and take.

III. DISTRIBUTED SYSTEM DESIGN

The island model was chosen as the basis for our distributed
system design [7]. In the island model, the initial population
is evenly divided among a number of subpopulations (islands).
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Each island executes all of the genetic operations, including a
migration operation. Migration allows for diversity among the
islands and prevents premature convergence. Also, there is a
scalability benefit to using this model because an increase in
the number of islands will lead to a larger diversity and a better
solution [5], [7]. The drawbacks of the island model can be seen
in a high communication cost depending on the frequency of
migration and also the network structure used in the model [5],
[7].

A. Simple Distributed System Model

The simple JavaSpace-based distributed system model
(SDSM) is a variation of the island model that also follows the
master-worker distributed systems paradigm [7], [24]. In this
paradigm the master, or initial machine, acts as the control en-
tity by populating the workers, or remote machines (islands),
and receiving the results. The workers simply wait until they
are given something to compute. Each worker is populated with
identical-sized sets of individuals. At this point the workers can
evolve their own initial population.
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Fig. 2. Simple Distributed System Model using Jini and JavaSpaces

Figure 2 provides a high level view of the SDSM architec-
ture. The SDSM uses two JavaSpaces (DistributionSpace and
DiversitySpace), one initial machine, and � remote machines.
The DistributionSpace is used for the distribution of the initial
population over a number of machines. The DiversitySpace is
used to handle communication between the remote machines
during migration. In addition to populating the remote ma-
chines, the initial machine is also responsible for populating the
DiversitySpace with individuals used in the first migration.

A.1 Drawbacks

Some performance concerns arise when taking a close look at
the SDSM and the procedures that execute within it. As the GA
instances grow in size, the sizes of the individuals in the popu-
lation will also increase, leading to larger packages being sent
back and forth from the DiversitySpace during migration. Dur-
ing our experimentation a slight increase in communication time
was seen due to the increase in packet sizes being sent across the
network.
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Fig. 3. Complex JavaSpace-Based Distributed System Model for the DGA

Without explicit synchronization, it is easy to see that the
SDSM allows for all of the remote machines to initiate the mi-
gration procedure at the same time with the same Diversity-
Space. A performance bottleneck occurs in this situation. The
most obvious reason is the extra amount of network load on the
one machine that hosts the DiversitySpace. Another cause could
be an overwhelming number of attempted interactions with this
JavaSpace. As the number of remote machines within the sys-
tem model rises, the performance of the JavaSpace falls.

Finally, as all of the remote machines are trying to migrate
with the JavaSpace, there is no computation within the entire
system. The computation-to-communicationratio for the SDSM
could fall to inadequate levels and possibly drop to the point
where a sequentially executed genetic algorithm will have better
performance. This situation has disastrous performance impli-
cations, and happened often enough to render the SDSM unac-
ceptable. A more complex system could help eliminate some of
these performance concerns.

B. Complex Distributed System Model

The complex distributed system model (CDSM) also fol-
lows a variation of the island model, but some other mod-
ules have been added to address performance problems, im-
prove the computation-to-communication ratio and eliminate
the possible bottleneck in the SDSM. Instead of having a sin-
gle DiversitySpace for migration, this system has multiple Mi-
grationSpaces. Each MigrationSpace also has its own Migra-
tionMachine, whose job is to fill the MigrationSpace with the
initial individual packages for early migrations. The initial ma-
chine and remote machines will have behaviors similar to those
described for the SDSM.
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The CDSM in Figure 3 makes use of one initial machine and
� JavaSpaces, remote machines, and migration machines. Its
execution begins at the initial machine. The only differences are
that there is no longer a single DiversitySpace and the popula-
tion packages sent by the initial machine are picked up by the
remote machines as well as the migration machines.

The remote machines begin execution of the DGA following
an algorithm similar to that described for the SDSM. When a re-
mote machine reaches migration, it performs the first migration
procedure with the unique MigrationSpace that was assigned by
the initial machine. Subsequent migrations take place with the
next MigrationSpace in the list. This synchronization mecha-
nism is used in order to reduce the load put on a single JavaSpace
by not allowing a large number of remote machines to access it
at the same time. The synchronization process will result in all
of the remote machines migrating with a different JavaSpace at
any given time. This will reduce diversity of the populations on
each remote machine since each MigrationSpace will not nec-
essarily consist of individuals from all of the remote machines.
To handle the initial migration, the migration machines will ini-
tially fill the MigrationSpaces with random packages.

As in the SDSM, upon termination of the GA running on the
remote machines, the results are sent back to the Distribution-
Space. The initial machine takes the results and compiles them.

IV. EXPERIMENT

We chose to adapt an existing Java-based solution to the knap-
sack problem to facilitiate a comparison between the SDSM,
CDSM, and the sequential GA. For a detailed review of the
weaknesses of the SDSM, please refer to [25]. We first define
the knapsack problem and the GA that attempts to solve it. Then
we discuss our testbench and the various metrics used for anal-
ysis.

A. Knapsack Problem

We employ a genetic algorithm [10] that provides a solu-
tion to the knapsack problem for the analysis of our simple dis-
tributed system model (SDSM) and complex distributed system
model (CDSM), and their comparison to the sequential counter-
part.

In the knapsack problem, we are given a set of � items,���������
	�	�	��
�� , where item � has size ��� and value ��� . The

knapsack has capacity � . We want to find the subset
�������

that maximizes the value of � ������� � � , given that � � ����� � �! � .

B. Knapsack GA

The genetic algorithm that solves this version of the knapsack
problem executes in the following manner. At the start a set
of solution points is randomly selected. (A solution point is a
subset of

�
, represented as a bit string of length � , where the � -th

bit is 1 if and only if the � -th item is selected for inclusion in the
knapsack.) At each generation, the solution points are evaluated
for fitness (according to how much of the knapsack capacity they
fill), and the best and worst performers are identified. When
conditions are met for crossover, the best solution mates with a
random (non-extreme) solution, and the offspring replaces the

worst one. A random solution may also be mutated to vary the
gene pool [10].

C. Testbench

Our testbench consists of a set of solved knapsack instances.
These problem instances were developed through use of a
knapsack instance generator available on the OR Library [20].
We chose to create our testbench using item sets of sizes��"�#�#$�&%�#�#'�)(*#�#$�&+�#�#,�.-�#�# � ; the value of each weight was in the
range 0–5000. Through preliminary test-executions of the se-
quential GA, it was found that when using fewer than 500 items,
very good solutions were always found. On the other hand,
when the number of knapsack items exceeded 500, the number
of good solutions decreased drastically. In Section V, we label
harder test sets with higher numbers.

Along with the problem instances, the following GA parame-
ters will remain constant as follows:

� termination condition: GA terminates when best solution is
not updated after 75 generations

� crossover rate: 1.0, i.e., perform crossover at every generation
� mutation rate: 1.0, i.e., mutate at every crossover
� migration rate (SDSM and CDSM only): .30/30, i.e., migrate
30% of the population every 30 generations

In order to test the design of our system model, other pa-
rameters were varied in an organized way throughout the test-
bench. These include the number of remote machines for test-
ing the CDSM, the number of migration machines for testing
the CDSM, and the number of migration spaces for testing the
CDSM. Each generated problem instance was executed using �

remote machines for all �0/ ��1'�324�&%'�.+'�
�
# � . For the CDSM, the
number of migration machines and migration spaces equalled
the number of remote machines for each problem instance.

D. Metrics

Many of our measurements were time related. Execution time
is the time from start to finish of the test run. Since GAs are
known to have high execution costs, and distributed systems can
provide for a reduction in those costs, execution time provides a
logical means of comparison between the CDSM and the SGA.

In a distributed system, the higher the computation-to-
communication ratio, the more efficiently its resources are used.
Communication time is measured by “wrapping” every method
call that accesses the JavaSpaces, i.e., write and take. These
communication times are gathered for each remote machine
in order to provide a specific remote machine-oriented evalu-
ation. The computation-to-communication ratio is an average of
the computation-to-communication ratios of all the remote ma-
chines.

Another means of evaluating the design of the SDSM and the
CDSM is by measuring the diversity of the populations being
developed. We define the diversity of a population, measured
every ten generations, by subtracting the fitness of the least fit
individual from that of the most fit individual. An average diver-
sity for each remote machine, and also a total average diversity
is computed for the entire system test run.
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Solution quality is computed by taking the best solution as a
percentage of the knapsack capacity designated for that test run.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The aim of our experiments was to not only compare the
CDSM to its sequentially executed counterpart in terms of qual-
ity of solution and execution time, but also evaluate the design
of our CDSM. Table I shows the results we gathered based on
the metrics described in Section IV-D. In terms of quality of
solution, the CDSM displayed an improvement over the SGA.
As shown in Figures 4 and 5, a pattern begins to form in terms
of the quality of solution. The quality of solution for the SGA
gradually decreases throughout the tests, deteriorating to a low
of 64% on the largest test set. On the other hand, the quality of
solution for the CDSM outperformed the SGA throughout the
test suite and remained roughly at 75%, a fact that surely can be
attributed to the high diversity achieved through migration.

TABLE I

PERFORMANCE OF CDSM ON THE TESTBENCH

Set #Mach. Exec. time C/C Diversity QofS

1 seq 101009 n/a 589861.8 89.4
2 181102 2.01 653249.4 84.4
4 183860 1.39 1188449.6 87.7
6 318224 .70 1616393.6 89.3
8 378824 .74 1869822.2 93.8

2 seq 86054 n/a 677697.2 67.5
2 123321 2.28 939233.8 69.2
4 297380 .88 1377099.1 73.1
6 393355 .60 2016844.6 75.4
8 373855 .44 2407615.8 71.0

3 seq 123508 n/a 833481.7 75.4
2 155280 1.29 1133174.6 77.0
4 308782 .78 1875170.8 79.4
6 316706 .49 2352512.2 75.4
8 470343 .41 2606187.2 74.6

4 seq 58467 n/a 863806.7 69.2
2 359062 .78 1031281.7 75.8
4 340019 .77 1985523.5 79.1
6 495672 .40 2398799.8 73.8
8 435787 .37 3612381.0 74.7

5 seq 50138 n/a 937859.0 64.5
2 148137 1.05 1248085.5 73.7
4 294307 .55 1918584.8 76.0
6 598345 .32 2657823.5 72.9
8 598532 .28 3539287.8 75.5

The high execution cost seen in Figure 4 can be attributed
to the excessive amount of communication time experienced by
the remote machines during migration. As the chromosome size
grows throughout the test suite, so does the amount of data mi-
grated, therefore the amount of communication time will rise.
Table I shows that the average computation-to-communication
ratio over all test sets falls as the number of remote machines
rises. Over many instances the ratio decreased to a level below
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Fig. 4. CDSM compared to SGA in terms of execution time

one, meaning that the communication time actually exceeded
the computation time. This result shows an inefficient alloca-
tion of resources since the GAs executed by the remote workers
spend more time performing migration than computing genera-
tions.
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Fig. 5. CDSM compared to SGA in terms of quality of solution

However, a higher execution cost is actually desirable, as we
want the GA in our CDSM to continue searching as long as it
has a viable population. The SGA halts early due to stagnation
of its population. Figure 4 shows that as the test set gets larger
and more difficult, the execution time of the SGA diminishes.

Most of the improvements of the CDSM can be attributed to
the high diversity achieved during execution. Table I shows that
the diversity value computed for each test set grows as the num-
ber of remote machines grows. Therefore one can generally con-
clude that as the number of remote machines rises the potential
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for a better solution also rises. Yet, the distributed genetic al-
gorithm does not always capitalize on this potential. Indeed,
Figure 5 provides examples of test sets where an increase in the
number of machines did not always increase the quality of solu-
tion.

VI. CONCLUSIONS AND FUTURE WORK

This research project was undertaken to investigate the feasi-
bility of using the Jini network technology and JavaSpaces ob-
ject repositories for a distributed genetic algorithm that attempts
to solve the knapsack problem. It was found that our CDSM
out-performed the SGA in terms of quality of solution due to
the high level of diversity achieved from our system design and
the addition of the migration procedure to the GA. However,
SGA had a better performance in terms of execution time. While
some performance concerns can be attributed to the use of Jini
and JavaSpaces [17], their simplicity and elegance as a back-
bone to a distributed system can provide for some interesting
future research. For example, a framework could be developed
in which any Java-based GA could be “plugged in” and exe-
cuted. This opens the doors for testing a wide variety of NP-
complete problems, such as traveling salesperson, multiproces-
sor scheduling problem, etc. Also, other JavaSpace implementa-
tions have been developed that improve upon their performance,
such as GigaSpaces, RDBSpace, and GLOBE [2], [14], [11].
These might also be investigated in order to develop a more ef-
ficient distributed system for a genetic algorithm.
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