
ReDeCheck: An Automatic Layout Failure Checking Tool
for Responsively Designed Web Pages

�omas A. Walsh
University of She�eld, UK

Gregory M. Kap�ammer
Allegheny College, USA

Phil McMinn
University of She�eld, UK

ABSTRACT
Since people frequently access websites with a wide variety of de-
vices (e.g., mobile phones, laptops, and desktops), developers need
frameworks and tools for creating layouts that are useful at many
viewport widths. While responsive web design (RWD) principles
and frameworks facilitate the development of such sites, there is
a lack of tools supporting the detection of failures in their layout.
Since the quality assurance process for responsively designed web-
sites is o�en manual, time-consuming, and error-prone, this paper
presents ReDeCheck, an automated layout checking tool that alerts
developers to both potential unintended regressions in responsive
layout and common types of layout failure. In addition to sum-
marizing ReDeCheck’s bene�ts, this paper explores two di�erent
usage scenarios for this tool that is publicly available on GitHub.

CCS CONCEPTS
•So�ware and its engineering → So�ware defect analysis;

KEYWORDS
Responsive web design, presentation failures, layout failures.
ACM Reference format:
�omas A. Walsh, Gregory M. Kap�ammer, and Phil McMinn. 2017. Re-
DeCheck: An Automatic Layout Failure Checking Tool
for Responsively Designed Web Pages. In Proceedings of 26th ACM SIGSOFT
International Symposium on So�ware Testing and Analysis, Santa Barbara,
CA, USA, July 10-14, 2017 (ISSTA’17), 4 pages.
DOI: 10.1145/3092703.3098221

1 INTRODUCTION
While a recent study by the Pew Research Center found that 95% of
Americans currently own a cellphone of some kind, the same report
also revealed that 80% of US adults use a desktop or a laptop and
50% have a tablet [1]. Results like these, which mirror those of
several other regions of the world [15], mean that web developers
must design websites that have aesthetically pleasing and functional
layouts on a wide variety of devices. Providing a quality experience
to end users can lead to increased revenue [7] and brand loyalty [4],
along with enhanced search engine rankings [5]. Conversely, a poor
page layout could lead to negative user experiences, particularly
on mobile devices, causing the majority of users to simply leave
the page [7], leading to the potential for lost revenue [9].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
ISSTA’17, Santa Barbara, CA, USA
© 2017 ACM. 978-1-4503-5076-1/17/07. . . $15.00
DOI: 10.1145/3092703.3098221

Envisioned Users. Aiming to capitalize on the numerous bene�ts
a�ributed to supporting users on a wide variety of devices, many
web developers have adopted responsive web design (RWD). �is
helps them in creating web pages that give an enhanced user ex-
perience regardless of the device being used to view the page [11].
Properly designed RWD-based sites achieve this by “responding” to
the user’s device, resizing and rearranging the content to best �t the
screen according to three core concepts: �uid grids, �exible media,
and media queries [11]. Fluid grids and �exible media use relative
sizing to scale web elements to the particular device, thus ensuring
that they are rendered within their containers. Media queries allow
developers to apply di�erent styling rules depending on the char-
acteristics of the current device — most commonly the width of the
device or browser, known as the viewport width. Many front-end
frameworks, such as Bootstrap [14] and Foundation [13], provide
RWD features, thereby giving developers the building blocks with
which they can create web pages that are responsive.
ChallengesAddressed.Given the complex interplay between web
elements and layout rules evident in responsive web pages, imple-
menting them can be di�cult, leading to developers introducing
undesirable visual e�ects into their pages. Figure 1 presents an
example of a responsive layout failure (RLF) in a production web
page: at wide viewport widths (i.e., parts (a) and (c)) the carousel of
language options �ts easily within the page, whereas at narrower
widths (i.e., parts (b) and (d)) it protrudes outside of the viewport,
making the right scroll arrow unclickable and negatively impacting
the page’s functionality. Since RLFs o�en occur intermi�ently at
unpredictable and occasionally small ranges of viewport widths,
detecting them is challenging. Moreover, this detection process is
o�en a manual one in which a developer “spotchecks” a web page at
certain viewport widths (e.g., 320 pixels for an iPhone, 768 pixels
for tablets, and 1024 pixels for laptops), an undertaking that is labor
intensive and error prone as certain RLFs can be easy to overlook.
Since it is challenging to spotcheck a page at every viewport width,
developers may miss layout failures that go on to production.
�e Tool. �e ReDeCheck tool (Responsive Design Checker, pro-
nounced “Ready Check”), presented in this paper, helps web de-
velopers implement responsively designed web pages that exhibit
correct layout at di�erent viewport widths. ReDeCheck features
two distinct modes for automatically checking a responsive web
page’s layout: regression checking and common failure detection.
Regression checking compares the responsive layout of the latest
and previous versions of a web page and reports to the user a list of
potential regression layout issues [19]. Common failure detection
analyzes the layout of the latest version of a web page and checks
for a number of common types of RLF [18]. ReDeCheck is well doc-
umented and currently available on GitHub, under an open-source
license, for evaluation and extension [20]. It is platform indepen-
dent and compatible with a range of frequently used web browsers.

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn

(a) 1298 pixels 3 (b) 983 pixels 7

(c) 1298 pixels (zoomed) 3

(d) 983 pixels (zoomed) 7

(e) ReDeCheck failure report

Figure 1: Screenshots of Duolingo, where a carousel of lan-
guages is correctly centered (parts (a) and (c)), before pro-
truding outside the viewport as the width narrows, obscur-
ing the right-hand arrow (parts (b) and (d)). Finally, part (e)
shows a report, produced by ReDeCheck, highlighting the
failure to the developer using dashed and solid red boxes.

Evaluation Results. We have conducted experiments to evaluate
both of ReDeCheck’s modes. �e results show that the tool can
accurately detect the majority of potential layout issues between
di�erent versions of a page when in regression checking mode [19].
When targeting speci�c layout failure types, the tool detected fail-
ures in popular websites such as Duolingo and Consumer Reports —
in addition to outperforming tool-supported manual spotchecking
methods. �e tool is also fast, running in less than two minutes on
most of the studied pages, making it feasible for developers to inte-
grate it into their responsive web design toolbox [18]. Finally, this
paper’s case studies show how a developer can use ReDeCheck’s
failure reports, like the excerpted one in Figure 1(e), to diagnose
and repair mistakes in a web page’s responsive layout.

2 THE REDECHECK TOOL
ReDeCheck is an automated layout checking tool, providing two
di�erent forms of developer support. In regression checking mode it
compares the responsive layouts of two versions of a web page (i.e.,
before and a�er a developer’s code modi�cation), reporting a list of
layout di�erences that are potential issues of which the developer
may be unaware [19]. �e common failure detection mode takes the
latest version of a web page as input and analyzes its responsive
layout, checking for di�erent types of common layout failures
that stem from the improper application of RWD principles and
were identi�ed through analysis of RWD in practice [18]. �ese
types are, namely, element collision (two elements overlapping),
element protrusion and viewport protrusion (elements over�owing
their container or the viewport, respectively), small-range layouts
(layouts only applied for a very small number of viewport widths)
and incorrectly wrapping elements (elements forced onto a new row
due to a lack of horizontal space). Figure 2 shows ReDeCheck’s

Regression Checking Common Failure Checking

W W ′ W

Model Extractor

Model Comparator Common Failure Detector

Report Generator

RLG RLG′ RLG

Freg Fcom

Report Report SSS

Figure 2: �e high-level structure of the ReDeCheck tool. To
the le� of the dashed vertical line, the modules support re-
gression checking, to the right, common failure checking.
structure: to the le� of the dashed vertical line, the modules support
regression checking, to the right, common failure checking.

At the core of the ReDeCheck tool is a representation of the
dynamic layout of a web page called the responsive layout graph
(RLG), which models both the changing visibility and alignment
of HTML elements as the viewport expands and contracts. For
example, two elements could be rendered one above the other
at narrow viewport widths, but side by side on wider viewports
with increased horizontal space. Furthermore, some elements may
only be visible at certain viewport widths. �e model extractor
module is responsible for extracting the RLG of a speci�ed web
page, rendering it in a browser and inspecting its layout at a series
of viewport widths via the document object model (DOM).

ReDeCheck picks sample widths by applying uniform sampling
(e.g., at 60 pixel intervals) and boundary sampling, which involves
searching the page’s stylesheet for the breakpoints at which the
layout is intended to change. �is two-part combined approach
thereby obtains as representative a sample as possible. �e layouts
at the chosen widths are then analyzed sequentially to model the re-
sponsive layout. If di�erence(s) are found between two consecutive
layouts, the tool conducts a binary search to �nd the exact viewport
width at which the layout changes, repeating the process until all
layouts are analyzed. ReDeCheck uses Selenium [2] to drive a
browser and render the page; Selenium’s support of many browsers
enables ReDeCheck to integrate into a developer’s environment.

In regression checking mode with input web pages W and W ′,
ReDeCheck begins by extracting RLGs for both to produce RLG and
RLG′. �e model comparator module then compares RLG and RLG′

using a pairwise matching approach to produce a set of di�erences
that could be regression failures, Freg . Before outpu�ing a report,
the report generator module analyses Freg to determine the nature
of the failures and the viewport widths at which they are visible.

When detecting common layout failures in a single web pageW ,
only one model, RLG, is extracted and analysed by the common
failure detector module to check for the presence of the di�erent
types of responsive layout failures. �e report generator then pro-
duces a textual report describing the detected failures, Fcom (i.e., the

ReDeCheck: An Automatic Layout Failure Checking Tool for
Responsively Designed Web Pages ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA

Table 1: Empirical evaluation results for ReDeCheck.
(a) Regression Checking

TP TN FP FN Recall

Total 80 12 0 8 90.9%

(b) Common Failure Checking
TP FP NOI Viewports RLFs

Total 196 48 83 137 33

type of failure, the elements involved, and the range of viewport
widths at which the failure manifests) accompanied by a set of
screenshots, S , showing each detected failure with the o�ending
HTML elements highlighted. A developer can then inspect each of
the individual failure reports. If the report shows an evident RLF
(i.e., a true positive (TP)) then the developer can debug and �x the
issue. If no failure is visible (i.e., a false positive (FP)) then no action
is required. Finally, if there is no visual failure but — at the level
of DOM coordinates — the elements are, for example, overlapping,
the developer may want to investigate further as these could be evi-
dence of an underlying structural defect that may manifest visually
in the future. We refer to these as non-observable issues (NOIs).

ReDeCheck is publicly available as an open-source tool on
GitHub [20]; there is extensive documentation on how to install and
run the tool and interpret its results. Each of the tool’s modules are
documented, allowing researchers and developers to understand its
design and implementation in Java. �e tool also contains a suite
of JUnit tests. Finally, ReDeCheck is extensible, supporting the
addition of new failure checkers in the common failure detector.

3 APPLYING THE TOOL
Using a variety of pages that were in production use, both of Re-
DeCheck’s modes have been subjected to empirical study to evalu-
ate their e�ectiveness. �is section summarises the methodology
and �ndings of these studies, additionally presenting two case stud-
ies showing how ReDeCheck detects and reports layout failures.

3.1 Experimental Studies
Table 1a furnishes the results from the evaluation of ReDeCheck’s
regression checking mode. Using simple code modi�cation oper-
ators that change, for instance, the width, margin or padding of
elements, we used a tool to create 20 incrementally modi�ed ver-
sions of �ve responsive pages, for a total of 100 modi�ed web pages.
�is empirical study revealed that ReDeCheck was capable of de-
tecting a majority of such layout changes, achieving 91% recall [19].
While 15 false negatives were observed, the relevant code modi-
�cations minimally changed the web page in a way that did not
in�uence the RLG created by ReDeCheck. As such, it is unlikely
that these changes represented failures, limiting any shortcomings
of ReDeCheck. Overall, these results indicate that the tool can
detect subtle variations in web page layout and notify developers of
potential layout issues. For more details, please read reference [19].

To investigate the prevalence of the �ve common types of RLFs
in real-world web pages and evaluate ReDeCheck’s ability to de-
tect them, we ran the tool on a corpus of 26 randomly collected
web pages of varying complexity and domain. ReDeCheck found
RLFs of all �ve common types. Well over half of the web pages,
including well-known ones such as Duolingo and Consumer Reports,
contained RLFs [18]. Since these pages were all in production use
and, we surmise, already subject to extensive testing, this result em-
phasises the importance and real-world relevance of the presented
tool, further underscoring the bene�ts of using ReDeCheck’s au-
tomated layout checkers. �is empirical study also revealed that

Differing bounds for /NAV/UL/LI[1] - /NAV/UL/LI[2] (leftOf, topAlign, bottomAlign):

Original : 768 -> 1300

Modified : 766 -> 1300

Figure 3: �e original version of getbootstrap.com (top-le�),
the incrementally modi�ed version (top-right), and a snip-
pet of the report produced by ReDeCheck (bottom).
ReDeCheck outperformed several spotchecking approaches. For
instance, a manual spotcheck missed Duolingo’s layout failure, as
highlighted in Figure 1, illustrating the error-prone nature of cur-
rent industrial quality assurance practices for responsive pages.

While the majority of the generated reports were true positives,
Table 1b reveals that ReDeCheck produced some FP and NOI re-
ports. For instance, when the tool incorrectly classi�ed three ele-
ments in one page as a “row”, it identi�ed alignment shi�s in these
elements as a wrapping failure when they were not. ReDeCheck re-
ported NOIs when it detected signi�cant changes in the DOM that
were not visible in the page’s layout. For example, the tool reported
a layout failure for elements that protruded invisibly out of their
container. While NOIs are not failures per-se, it is appropriate for
ReDeCheck to report them as they may manifest as layout failures
in future versions of the web page. Moreover, instead of studying
each of the generated reports, a developer using ReDeCheck could
visit every distinct viewport range highlighted by the tool. Since
Table 1b shows that the tool reported 137 di�erent viewport ranges
for the 33 distinct RLFs, a developer would only have to study, on av-
erage, 4.2 viewport widths to �nd each distinct RLF. Full evaluation
details and further RLF examples can be found in reference [18].

3.2 Case Studies
Regression checking. Figure 3 presents an example from one of
the web pages in our �rst empirical study, getbootstrap.com. In the
original version shown on the top-le�, the navigation links are
rendered in a vertical dropdown list at narrow viewport widths
before being displayed as a horizontal navigation bar at viewport
widths of 768 pixels and wider. However, following a small change
to the style rules of the web page, for a couple of viewport widths
(i.e., 766–767 pixels) the web page renders the navigation links in
a row rather than a column, defeating the point of implementing
a drop-down navigation list and producing a far less professional
aesthetic, as shown in the top-right screenshot of this �gure.

Since the failure is only observable at a couple of viewport widths,
it could lie dormant. For example, if developers only checked the
layout at 768 pixels — as many do since this width is advocated by
numerous RWD tools (e.g., [8, 21]) — they would be unaware that
the web page now contained this failure. �e report snippet shown
at the bo�om of this �gure inducates that ReDeCheck detects
this potential issue and alerts the developer to its presence. It also
provides useful diagnostic information, such as the viewport widths
at which the page’s layout has changed and the elements involved,
allowing the developer to ascertain if a failure is actually evident.

In the case of the web page in Figure 3, the textual report would
alert the developer to a change in the alignment constraint between

ISSTA’17, July 10-14, 2017, Santa Barbara, CA, USA Thomas A. Walsh, Gregory M. Kapfhammer, and Phil McMinn

LI[1] and LI[2] (i.e., the “Ge�ing Started” and “CSS” links in the
header): LI[1] is aligned to the le� of LI[2] and they are both top
and bo�om aligned for a di�erent range of viewport widths. Origi-
nally, the layout is evident for viewport widths of 768 pixels and
higher (denoted by “768 -> 1300”). Following the code modi�cation,
the layout instead begins at 766 pixels, motivating a developer to
change the page’s style rules to ensure that the navigation links are
correctly rendered in a single column as was intended, restoring a
professional look and feel to the web site. Since the current failure
reports include DOM references, and therefore may be hard to in-
terpret, further engineering is required to make them more useful
for developers, which we plan to undertake as part of future work.
Common failure detection. Figure 1(e) gives a failure report
screenshot of Duolingo produced by ReDeCheck during our sec-
ond evaluation of the tool. �e solid red box highlights the faulty
carousel as it protrudes outside of the viewport window (denoted
by a dashed red line), making the carousel di�cult to use as the
right-hand arrow is obscured from view. �is is an example of a
web page providing a good browsing experience on smartphones
and laptops, but neglecting devices with viewport widths in be-
tween, such as tablets. Violating a core principle of RWD — that a
page should provide a suitable experience regardless of the viewport
width at which it is viewed — this failure reduces functionality.

By detecting this issue and highlighting the o�ending elements
with coloured boxes, ReDeCheck clearly alerts the developer to
both the presence and nature of the problem. In this instance, the
developer would investigate the carousel’s style rules, modifying
them so that this element scales down its width in accordance with
the viewport, thereby ensuring the arrow is not obscured at the
highlighted width. Without ReDeCheck’s assistance a developer
would not only have to inspect the web page at one of the faulty
viewport widths, but also manually check the layout with su�cient
care so as to notice the failure — neither of which is guaranteed.

4 RELATEDWORK
To the best of our knowledge, ReDeCheck is the �rst tool that
automatically checks a responsive web page; previous research
prototypes for web testing have targeted orthogonal problems. X-
Pert [16] and gwali [3] used the same concept of relative layout
to detect cross-browser inconsistencies (XBIs) and international-
ization presentation failures (IPFs), respectively. WebSee [10] and
Wraith [12] adopt a di�erent approach, using image compari-
son to report presentation failures to the user. Cornipickle [6]
supports user-de�ned layout constraints describing how the web
page should look, alerting the user if any of the constraints are not
met. Yet, none of these tools speci�cally address the challenges
associated with automated responsive web page checking. Unlike
ReDeCheck’s failure checking mode, they also require an oracle.

Developers also have access to many tools for testing respon-
sively designed web pages. Most modern browsers come with a
“responsive mode” that renders the current page at the developer’s
chosen resolution. Multi-screenshot tools (e.g., [8]) give developers
a simple overview of a page’s responsive behaviour by rendering
it at a series of common viewport widths, while others (e.g., [21])
provide the option to tune the display to a speci�c resolution, en-
abling �ne-grained checking. While these tools are useful, they still
require the developer to study the page at each resolution. Finally,

Galen [17] is a responsive layout testing framework with which
a developer describes the intended layout of a page, verifying it
at chosen viewport resolution(s). Unlike ReDeCheck, this tool
requires the developer to write tests with one or more oracles.

5 CONCLUSIONS AND FUTUREWORK
�e paper presents ReDeCheck, a tool that uses automatic lay-
out checking to improve the quality assurance process for respon-
sively designed web pages. Supporting two checking modes, Re-
DeCheck can detect both potential unintended regressions in lay-
out and a set of common layout failures o�en observed in responsive
pages. In addition to summarizing recent experimental studies of
ReDeCheck, the paper presents case studies that illustrate how
the automatically constructed failure reports help developers un-
derstand and repair layout problems. Platform independent and
compatible with a range of web browsers (e.g., Chrome, Firefox,
Safari, and PhantomJS), ReDeCheck is well documented and cur-
rently available on GitHub under an open-source license [20], thus
supporting use by practitioners and further study by researchers.

In future work, we plan to improve the report generation module
so that it outputs an interactive and easy-to-interpret report in
which the most “important” RLFs are presented �rst. We also intend
to enable ReDeCheck to handle dynamic pages that use JavaScript
and to check the layout of entire sites, rather than just individual
pages. We will also extend the regression checking mode so that it
allows developers to check a page’s layout in two di�erent browsers,
thereby enabling the detection of responsive XBIs. Finally, to ensure
that developers adopt and integrate our tool into their development
suites, we plan to create browser plugins for ReDeCheck.

REFERENCES
[1] Pew research center: Mobile fact sheet. h�p://www.pewinternet.org/fact-

sheet/mobile/.
[2] Selenium: Web browser automation h�p://www.seleniumhq.org/.
[3] A. Alameer, S. Mahajan, and W. G. Halfond. Detecting and localizing interna-

tionalization presentation failures in web applications. In Proc. of 9th ICST.
[4] D. Cyr, M. Head, and A. Ivanov. Design aesthetics leading to m-loyalty in mobile

commerce. Inf. Manag., 43(8), 2006.
[5] C. Dougherty. Google adds ‘mobile friendliness’ to its search criteria. NYT.
[6] S. Hallé, N. Bergeron, F. Guerin, G. L. Breton, and O. Beroual. Declarative layout

constraints for testing web applications. J. Log. Algebr. Meth. Program., 85, 2016.
[7] R. Hof. Google research: No mobile site = lost customers. Forbes, 2012.
[8] M. Kersley. Responsive design testing h�p://ma�kersley.com/responsive/.
[9] W. Li, M. J. Harrold, and C. Görg. Detecting user-visible failures in AJAX web

applications by analyzing users’ interaction behaviors. In Proc. of 25th ASE, 2010.
[10] S. Mahajan and W. G. Halfond. WebSee: A tool for debugging HTML presentation

failures. In Proc. of the 8th ICST, 2015.
[11] E. Marco�e. Responsive Web Design. A Book Apart, 2014.
[12] BBC News. Wraith h�ps://github.com/bbc-news/wraith/.
[13] ZURB Corporation. Foundation h�p://foundation.zurb.com/.
[14] M. O�o and J. �ornton. Bootstrap h�p://getbootstrap.com/.
[15] J. Poushter. Smartphone ownership and Internet usage continues to climb in

emerging economies. In Pew Research Cener – Global A�itudes and Trends, 2016.
[16] S. Roy Choudhary, M. R. Prasad, and A. Orso. X-PERT: Accurate identi�cation

of cross-browser issues in web applications. In Proc. of the 35th ICSE, 2013.
[17] I. Shubin. Galen framework h�p://galenframework.com/.
[18] T. A. Walsh, G. M. Kap�ammer, and P. McMinn. Automated layout detection

for responsive web pages without an explicit oracle. In Proc. of ISSTA, 2017.
[19] T. A. Walsh, P. McMinn, and G. M. Kap�ammer. Automatic detection of potential

layout faults following changes to responsive web pages. In Proc. of 30th ASE.
[20] T. A. Walsh, P. McMinn, and G. M. Kap�ammer. ReDeCheck

h�ps://github.com/redecheck/redecheck/.
[21] M. Wassermann. Viewport resizer h�p://lab.maltewassermann.com/viewport-

resizer/.

	Abstract
	1 Introduction
	2 The ReDeCheck Tool
	3 Applying The Tool
	3.1 Experimental Studies
	3.2 Case Studies

	4 Related Work
	5 Conclusions and Future Work
	References

