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Abstract A flaky test is a test case whose outcome changes without modifica-
tion to the code of the test case or the program under test. These tests disrupt
continuous integration, cause a loss of developer productivity, and limit the
efficiency of testing. Many flaky test detection techniques are rerunning-based,
meaning they require repeated test case executions at a considerable time cost,
or are machine learning-based, and thus they are fast but offer only an approx-
imate solution with variable detection performance. These two extremes leave
developers with a stark choice. This paper introducesCANNIER, an approach
for reducing the time cost of rerunning-based detection techniques by combin-
ing them with machine learning models. The empirical evaluation involving
89,668 test cases from 30 Python projects demonstrates that CANNIER can
reduce the time cost of existing rerunning-based techniques by an order of mag-
nitude while maintaining a detection performance that is significantly better
than machine learning models alone. Furthermore, the comprehensive study
extends existing work on machine learning-based detection and reveals a num-
ber of additional findings, including (1) the performance of machine learning
models for detecting polluter test cases; (2) using the mean values of dynamic
test case features from repeated measurements can slightly improve the de-
tection performance of machine learning models; and (3) correlations between
various test case features and the probability of the test case being flaky.
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1 Introduction

A flaky test is a test case that can exhibit both passing and failing behav-
ior without changes to the code of the test case or the program under test
[54]. They are a serious problem for software developers because they disrupt
continuous integration, cause a loss of productivity, and limit the efficiency of
testing. The pain of flaky tests is felt by developers in both the open-source
domain [34] and in large companies such as Google, Microsoft, and Facebook
[45,51,52]. A survey of developers found that 56% observed flaky tests on at
least a monthly basis in the projects on which they were currently working [56].

Flaky tests that depend on the prior execution of other test cases in the
test run order are known as order-dependent flaky tests. Another term for
such flaky tests is victim, and the prior test cases that affect their outcome are
known as polluters [65]1. Victim flaky tests are very prevalent, with one study
finding that 51% of the 422 flaky tests in 82 Java projects were victims [47].
They are a major snag to techniques that split-up or reorder a test suite, such
as test case prioritization, selection, and parallelization [23,30,48].

The research community has introduced a multitude of automated tech-
niques to detect flaky tests. Many are rerunning-based, meaning they may
require an excessive number of repeated test case executions, making them
expensive for deployment in large software projects [47,76]. Alshammari et al.
[22] repeatedly executed the test suites of 24 Java projects and were still detect-
ing non-order-dependent (NOD) flaky tests after 10,000 reruns. We estimated
that the single-core time cost of detecting the 158 NOD flaky tests in our sub-
ject set of 89,668 test cases by rerunning them up to 2,500 times is 1.6 years.
The time cost of rerunning-based detection led researchers to investigate tech-
niques that do not require test case runs but are instead based on machine
learning models trained on features of the test case code [25,58]. Later studies
found that combining these with dynamic test case features, such as execution
time and line coverage, increases detection performance at the cost of a single
instrumented test suite run to measure these features [22,55]. Despite this, ma-
chine learning models in this domain offer only an approximate solution. For
example, for detecting NOD flaky tests in Java projects, one previous study’s
evaluation shows a Matthews correlation coefficient (MCC), a reliable metric
for evaluating a machine learning model [32], of 0.65 [22]. Another, focusing
on Python projects, shows an MCC of 0.53 [55]. For these results, we would
expect a perfect machine learning model to score 1 and a model no better
than random guessing to score 0. The prohibitive time cost of rerunning-based
techniques and the limited performance of machine learning-based techniques
leaves practitioners with a stark choice when it comes to detecting flaky tests.

This paper introduces CANNIER (maChine leArNiNg assIsted tEst
Rerunning), a high-level approach for reducing the time cost of rerunning-
based detection techniques by combining them with machine learning models.

1 The paper that introduced the victim/polluter terminology [65] also introduced the
terms brittle/state-setter for when the order-dependent test fails in isolation. In this paper,
we use the victim/polluter terms generally, regardless of the order-dependent test’s outcome.
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It does this by using the output of the models as a heuristic to reduce the
problem space for the rerunning-based technique. We demonstrate the ap-
plicability of CANNIER by instantiating it for three previously established
detection techniques. We implemented these within an automated tool and
empirically evaluated them using 30 Python projects as subjects. We found
that CANNIER could significantly reduce time cost at the expense of only
a minor reduction in detection performance. For example, by applying CAN-
NIER to the Classification stage of iDFlakies [47] (that distinguishes NOD
flaky tests from victim flaky tests), we were able to reduce its time cost by
84% at the expense of misclassifying just 8 flaky tests out of 1,130. Therefore,
CANNIER represents a “best of both worlds” solution to flaky test detection.

In summary, the main contributions of this paper are:

Contribution 1: Approach. A novel approach, called CANNIER, that sig-
nificantly reduces the time cost of rerunning-based flaky test detection with a
minimal decrease in detection performance. See Section 3 for more details.

Contribution 2: Tooling. To facilitate our empirical evaluation and allow for
replication of our results, we developed an extensive framework of automated
tools that we make freely available [5]. See Section 4 for more details.

Contribution 3: Empirical Evaluation. A comprehensive empirical evalua-
tion demonstrates the effectiveness of CANNIER’s combination of re-running
and machine learning techniques, revealing further novel findings about ma-
chine learning-based flaky test detection, such as the performance of machine
learning models for detecting polluter test cases. See Section 5 for more details.

Contribution 4: Dataset. A dataset containing 89,668 tests from 30 Python
projects taking over six weeks of compute time to produce. We make this
available as part of our replication package [4]. See Section 5.1 for more details.

2 Background

2.1 Rerunning-Based Flaky Test Detection

2.1.1 Rerun

The research community has presented many automated flaky test detection
techniques that are based on rerunning test cases. The most straight-forward
such technique is to repeatedly execute a test case until it exhibits both passing
and failing behavior. In its most basic form, this technique involves rerunning
the test cases of a test suite in the same test run order and under the same
environmental conditions each time [24]. We refer to this specific technique
as Rerun. Since the test run order remains constant, Rerun can only iden-
tify non-order-dependent (NOD) flaky tests. As its only parameter, Rerun
requires an upper-limit on the number of times to execute a test case without
observing an inconsistent outcome. If the upper-limit is reached, the tech-
nique classifies the test case as non-flaky and stops rerunning it. Since many
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test cases may require hundreds or even thousands of runs to manifest their
flakiness [22], this technique can become very expensive for long-running test
suites with numerous tests, thus limiting the technique in practice.

2.1.2 iDFlakies

Lam et al. [47] presented iDFlakies, a technique for detecting flaky tests
and classifying them as NOD or a victim. The technique consists of three
stages: Setup, Running, and Classification. In the Setup stage, iDFlakies re-
peatedly executes the test suite in its original order to identify and filter any
consistently-failing test cases. In the Running stage, iDFlakies continues to
rerun the test suite, but this time in modified test run orders. In the Classifica-
tion stage, for every test case that failed during the Running stage, iDFlakies
re-executes the test suite in both the original order and in the modified order
that witnessed the failure, truncated up to and including the failing test case.
We refer to this stage as iDFClass (iDFlakiesClassification). Should the
test case fail again in the truncated modified order and pass again in the trun-
cated original order, iDFlakies classifies it as a victim. Otherwise, it classifies
the test case as NOD. Should a test case fail multiple times during the Run-
ning stage, iDFlakies can repeat the Classification stage for a percentage of
the additional failures for greater confidence in the final label.

iDFlakies has several parameters: the number of reruns during the Setup
stage, the number of reruns during the Running stage, the method of generat-
ing the modified test run orders during the Running stage (e.g., shuffle), and
the percentage of additional failures to recheck in the Classification stage. De-
pending on the choice of values for these parameters, iDFlakies can require a
significant number of test executions and thus impose a prohibitive time cost.

2.1.3 Pairwise

While the iDFlakies technique can detect victim flaky tests, it cannot identify
their associated polluters. Zhang et al. [76] proposed a technique that can de-
tect a subset of a test suite’s victims and their polluters (although the authors
designed the technique primarily for detecting victims). It involves executing
every permutation of test cases of length two (every pair in both orders) in
isolation, such as in separate Java Virtual Machine or Python interpreter pro-
cesses. We refer to this technique as Pairwise. Initially, Pairwise requires
an expected outcome for every test case. It could obtain these by executing
each test case in isolation to observe their outcome independent of the possible
side-effects of other test cases. Once every test case has an expected outcome,
Pairwise executes every 2-permutation of test cases, such that each test case
has a turn at being both the first and second to be executed in the pair — the
candidate polluter and victim, respectively. For more reliable results, Pairwise
ought to filter out any pairs with a known NOD flaky test as the candidate
victim because they do not have a reliable expected outcome (although Zhang
et al. did not propose this filtering stage in their paper). For a given pair, if
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the second test yields an outcome different from expected, Pairwise classifies
it as a victim and classifies the first test as one of its polluters.

Previous work has determined that an order-dependency can involve more
than two test cases [65], though as part of their empirical study, Zhang et al.
found that 76% of order-dependencies did involve just two. Considering only
pairs of test cases, the time complexity of Pairwise is already quadratic in
the size of the test suite and hence very expensive, and so to consider longer
permutations would quickly render the technique intractable.

2.2 The Flake16 Feature Set

Alshammari et al. [22] introduced FlakeFlagger, a tool for detecting flaky
tests using a machine learning model. To encode test cases for model training
and evaluation, they used a feature set initially consisting of eight numeri-
cal test case features and eight boolean features indicating the presence of
test smells [37]. However, having found the eight test smell features to offer
very little information gain, they eventually discarded them. Their empiri-
cal evaluation involving 24 Java projects showed that their machine learning
model achieved a Matthews correlation coefficient (MCC) of 0.65. In our pre-
vious work, we introduced the Flake16 feature set for encoding test cases
[55]. It subsumes the feature set used by the FlakeFlagger tool and intro-
duces additional metrics such as the number of times the filesystem performed
input/output operations during test case execution and the peak memory us-
age. Our previous evaluation involving 26 Python projects showed that models
based on Flake16 generally outperformed models based on the FlakeFlag-
ger feature set for detecting both NOD and Victim flaky tests.

3 The CANNIER Approach

CANNIER (maChine leArNiNg assIsted tEst Rerunning) is a high-level ap-
proach that combines a rerunning-based flaky test detection technique and one
or more machine learning models. The models must provide a predicted proba-
bility that a given test case is flaky. The general concept behind CANNIER is
to use the predicted probabilities as a heuristic to reduce the problem space for
the rerunning-based technique. As attested by our later empirical evaluation
(see Section 5), this approach can dramatically reduce the number of test case
executions, and therefore time cost, at the expense of only a minor decrease
in detection performance. The specifics of how CANNIER uses the predicted
probabilities depends on the nature of the rerunning-based technique. Fig.
1 provides a visual summary of the application of CANNIER to the three
rerunning-based detection techniques introduced in Section 2.1.
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(a) For Rerun and iDFClass, CANNIER uses a single machine learning model to predict
the probability of a given test case being of the positive class (flaky). If the probability is
below a lower-threshold or above an upper-threshold, CANNIER assigns the test case a
negative or positive predicted label respectively. In the ambiguous region between the two
thresholds, CANNIER delegates to the rerunning-based technique to predict the label.

Victim model

1.0

0.0

Victim
thresh.

Polluter model

TV

Pairwise

Victim-polluter
pairsTP

Test case
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(b) For Pairwise, CANNIER uses one machine learning model to predict the probability
of each test case being a victim and another to do the same for being a polluter. All those
with a probability of being a victim above a threshold join the set of candidate victims, TV .
Similarly, those with a probability of being a polluter above a threshold enter the candidate
polluters set, TP . CANNIER then restricts Pairwise to consider only test cases from TP as
the first test case of each pair, and only test cases from TV as the second.

Fig. 1: CANNIER uses the predicted probabilities from one or more machine
learning models as a heuristic to reduce the problem space of a rerunning-based
flaky test detection technique. A single machine learning model is suitable
for Rerun and the Classification stage of iDFlakies (iDFClass) (a). Two
machine learning models are required for Pairwise (b).

3.1 Motivating Example

We used the Airflow project, developed by the Apache Software Foundation,
as one of the subjects in our empirical evaluation [3]. Its test suite contains
3,251 test cases as of version 1.10.14. We executed the test suite 2,500 times
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in its original order and identified 66 NOD flaky tests. Following our empirical
evaluation, we found that the single-core time cost to detect these flaky tests,
using Rerun with a maximum of 2,500 reruns per test case, is 1.69 × 106

seconds. This is based on the time cost of each individual test case that
we measured on a machine with a 24-core AMD Ryzen 5900X CPU. Having
the same number of virtual cores and a comparable single-core performance,
m5zn.6xlarge is arguably the most similar cloud instance offered by Amazon
Web Services [11]. As of August 2022, Amazon offers this instance at the on-
demand hourly rate of 1.982 USD. This means that to detect the NOD flaky
tests in Airflow using Rerun would take ((1.69× 106)÷ 24)÷ 602 ≈ 19.56
hours and cost 19.56× 1.982 ≈ 38.77 USD on this instance.

Given the cost in both time and money of usingRerun to detect flaky tests,
a developer may instead opt to use a machine learning model. We trained an
extra trees model, a variation of random forest [38], to detect NOD flaky tests
and evaluated it using stratified 10-fold cross validation. Within Airflow, we
found that it misclassified 26 test cases that were flaky as non-flaky, and 26 test
cases that were non-flaky as flaky. With only 40 of the 66 NOD flaky tests cases
actually classified as such, the model achieved a precision of 40÷ (40 + 26) ≈
61% and a recall of 40 ÷ (40 + 26) ≈ 61%. In this context, precision is the
percentage of detected flaky tests that are genuinely flaky and recall is the
percentage of genuinely flaky tests that were detected. Therefore, machine
learning-based detection offers a very approximate solution. Because the model
uses dynamic features, the time cost of applying it is approximately equal to
the time cost of a single test suite run to produce a feature vector for each
test case. We observed a single-core time cost for this of 7.77 × 102 seconds
for Airflow. This would require ((7.77× 102)÷ 24)÷ 602 ≈ 0.01 hours on an
m5zn.6xlarge instance, costing 0.01×1.982 ≈ 0.02 USD. We do not consider
the time cost associated with applying the extra trees model to each test case.
This is because it is negligible relative to the time taken to execute the test
suite (typically less than one second), as we found in our previous work [55].
We also do not consider the time taken to train the extra trees model. This is
because the model only needs to be trained once and can then be applied any
number of times. For this reason, we consider training to be an off-line stage
that does not contribute to the time cost of applying the model to test cases.

Rerunning-based detection and machine learning-based detection represent
opposite extremes. As shown in this example, Rerun is very expensive and the
extra trees model is cheap but very approximate. By applying CANNIER to
Rerun (CANNIER+Rerun), developers get a flaky test detection technique
that is much cheaper thanRerun and much more accurate than the extra trees
model. Following our empirical evaluation, we found that the single-core time
cost to detect the 66 NOD flaky tests in Airflow using CANNIER+Rerun
is 7.71 × 105 seconds. This would require ((7.71 × 105) ÷ 24) ÷ 602 ≈ 8.92
hours on an m5zn.6xlarge instance at a cost of 8.92 × 1.982 ≈ 17.68 USD.
Therefore, CANNIER reduces the cost in USD of Rerun by 54%. We also
found that it misclassified three flaky tests as non-flaky but correctly classified
the remaining 62. This leads to a precision of 63÷(63+0) = 100% and a recall
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of 63÷ (63 + 3) ≈ 95%. This is far more accurate than the extra trees model
that only achieved a precision and recall of 61%.

Our empirical evaluation demonstrates that CANNIER is effective for
multiple projects and the three rerunning-based detection techniques intro-
duced in Section 2.1. For our whole dataset of 89,668 test cases from 30
projects, we found that CANNIER was able to reduce the time cost (and
therefore monetary cost) by an average of 88% across the three techniques.

3.2 Single-Model CANNIER

Using CANNIER with a single machine learning model is suitable for re-
ducing the time cost of Rerun and iDFClass (the classification stage of
iDFlakies). In the case of Rerun, the flaky test classification problem is
that of distinguishing NOD flaky tests from the rest of the test cases. Since it
is a binary problem, NOD flaky tests are the positive class and the rest of the
test cases are the negative. For iDFClass, it is telling apart NOD and victim
flaky tests. In this case, NOD flaky tests are the positive class and victims are
the negative. For both Rerun and iDFClass, the machine learning model
should provide a predicted probability of belonging to the positive class for
each test case. CANNIER assigns a positive predicted label to a test case if
this probability is above an upper threshold and a negative predicted label if
it is below a lower threshold. This leaves an ambiguous region between the two
thresholds. CANNIER delegates any test cases with predicted probabilities
within this ambiguous region to the rerunning-based technique.

3.3 Multi-Model CANNIER

Using two models, CANNIER can reduce the time cost of Pairwise. The first
model is used to predict the probability of each test case being a victim. In
other words, it addresses the classification problem of distinguishing victims
from non-victims. The second is used to do the same but for being a polluter.
For both models, CANNIER classifies every test case above a threshold as the
positive class (a victim or a polluter) and every other test case as the negative
(not a victim or not a polluter). In this way, CANNIER produces two non-
mutually exclusive sets, one of victims, TV , and one of polluters, TP (there is
no reason why a test case cannot be both a victim and a polluter [70]). Then,
CANNIER applies Pairwise with only the members of TP as the first test in
each pair and only the members of TV as the second. Therefore, CANNIER
can reduce the time complexity of Pairwise from O(|T |2), where T is the set
of all test cases in the test suite, to O(|TV | × |TP |), that is considerably faster
even when TV and TP are not significantly smaller than T .
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Table 1: The 18 features measured by pytest-CANNIER.

# Feature Description

1 Read Count Number of times the filesystem had to perform input [9].
2 Write Count Number of times the filesystem had to perform output [9].
3 Run Time Elapsed wall-clock time of the whole test case execution.
4 Wait Time Elapsed wall-clock time spent waiting for input/output oper-

ations to complete.
5 Context Switches Number of voluntary context switches.
6 Covered Lines Number of lines covered.
7 Source Covered Lines Number of lines covered that are not part of test cases.
8 Covered Changes Total number of times each covered line has been modified in

the last 75 commits.
9 Max. Threads Peak number of concurrently running threads.

10 Max. Children Peak number of concurrently running child processes.
11 Max. Memory Peak memory usage.
12 AST Depth Maximum depth of nested program statements in the test case

code.
13 Assertions Number of assertion statements in the test case code.
14 External Modules Number of non-standard modules (i.e., libraries) used by the

test case.
15 Halstead Volume A measure of the size of an algorithm’s implementation [21,

57,59].
16 Cyclomatic Complexity Number of branches in the test case code [39,57,59].
17 Test Lines of Code Number of lines in the test case code [57,59].
18 Maintainability A measure of how easy the test case code is to support and

modify [19,71].

4 Tooling

To produce our dataset and facilitate our empirical evaluation, we developed
our own suite of automated tools including a plugin for the Python testing
framework pytest [15], named pytest-CANNIER [14], and a command-
line tool named CANNIER-Framework [5]. The purpose of pytest-
CANNIER is to add the functionality to pytest necessary for our evaluation.
This includes recording test case outcomes and measuring feature values. The
purpose of CANNIER-Framework is to automate every aspect of our eval-
uation, including executing pytest-CANNIER on the subject test suites,
collating raw data, and training and evaluating machine learning models.

4.1 pytest-CANNIER

We decided to target pytest due to its compatibility with test suites written
for other frameworks such as unittest [17]. pytest-CANNIER takes a test
suite T as input and offers four execution modes: Baseline, Shuffle, Features,
and Victim. In the Baseline mode, the plugin executes the test suite as normal.
For each test case t ∈ T , pytest-CANNIER records its outcome bt, that is
either pass, bt = 0, or fail, bt = 1. In the Shuffle mode, the plugin randomizes
the order of the test cases and records the outcome of every test case st.
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t1
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Victim(t1)
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o2,1

t1 t3

o3,1
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b1
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b2 b3

Baseline

t3 t1 t2

s1s3 s2

Shuffle

t1 t2 t3

x2x1 x3

Features

t1 t2 t3

T

Fig. 2: As input, pytest-CANNIER takes a test suite T=(t1, t2, t3) and can
be launched in four modes: Baseline, Shuffle, Features, or Victim. In the Base-
line mode, the plugin runs the test suite in its original order and records the
pass/fail outcome of every test case (b1, b2, b3). In the Shuffle mode, pytest-
CANNIER executes the test suite in a random order and also records test
case outcomes (s1, s2, s3). In the Features mode, the plugin produces a feature
vector for each test case (x1, x2, x3). In the Victim mode, pytest-CANNIER
takes a victim test case as an additional input (t1) and initially executes it in
isolation to ascertain its expected outcome (o1). Then, the plugin executes ev-
ery other test case in a separate process with the victim immediately following
and records its outcome (o2,1, o3,1). This is to identify polluters of the victim.

In the Features mode, pytest-CANNIER produces a feature vector
xt ∈ R18, for each test case t. This contains the 16 features of Flake16
alongside two additional metrics. The first of these is Wait Time. This is the
amount of time during test case execution spent waiting for input/output
(I/O) operations to complete. Previous research identified I/O in test cases as
being potentially associated with flakiness [50]. The second additional feature
is Max. Children. This measures the peak number of concurrently running
child processes. A finding that many empirical studies have in common is that
asynchronous operations and concurrency are very frequent causes of flaky
tests [35,46,50,61]. This was our rationale for the inclusion of Max. Threads
into Flake16. However, due to the global interpreter lock implemented within
the CPython interpreter [8], it may be necessary for developers to achieve con-
currency with child processes. Table 1 offers a description of all 18 features.
In the Victim mode, the plugin takes a test case v, executes the test sequence
⟨v⟩, and records the outcome of v, ov. This is to ascertain the expected out-
come of v when executed in isolation from the rest of the test suite. Following
this, pytest-CANNIER executes the sequences ⟨p, v⟩ for every test case p in
T − {v}, while recording the outcome of v when executed immediately after
each p, op,v. This is to identify the polluters of v where op,v ̸= ov. For isolation
between sequence runs, the plugin executes them in separate Python processes
[24,76]. This implements the Pairwise technique with respect to a single can-
didate victim v. Fig. 2 provides a visual summary of pytest-CANNIER.
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4.2 CANNIER-Framework

4.2.1 Model Training and Evaluation Data

As input, CANNIER-Framework takes a subject set of test suites U . With
every test suite T ∈ U as input, the framework executes the plugin NB times in
the Baseline mode, resulting in NB values of bt, (bt,1, bt,2, . . . , bt,NB

), for each
test case t ∈ T . Similarly, CANNIER-Framework runs every test suite NS

times in the Shuffle mode, leading to NS values of st, (st,1, st,2, . . . , st,NS
). In

both cases, the framework counts the number of times that every test case
fails in the Baseline mode Bt, and the number of times in the Shuffle mode
St. The definition of both values is given in the following equation.

Bt =

NB∑
i=1

bt,i St =

NS∑
i=1

st,i (1)

CANNIER-Framework also executes each test suite NF times with
pytest-CANNIER in the Features mode, resulting in NF feature vectors
for every test case t (xt,1,xt,2, . . . ,xt,NF

). As an additional input, the frame-
work takes I, a random sample of nF indices ranging from 1 to NF inclusive
without replacement. With this, the framework produces a mean feature vector
Xt(I), to encode each test case according to the following equation.

Xt(I) =
1

nF

∑
i∈I

xt,i (2)

For each T ∈ U , the framework runs the Victim mode of pytest-
CANNIER with every test case that had a consistent outcome in the Baseline
mode (Bv = 0 ∨ Bv = NB) and an inconsistent outcome in the Shuffle mode
(Bv ̸= Sv) as the candidate victim v. The former condition is to ensure that
every v has the reliable expected outcome that Pairwise requires. The latter is
a time saving measure — if a test case is consistent in the Shuffle mode then it
is very unlikely to be a victim and therefore would have no polluters. For the
purposes of greater reproducibility and isolation, CANNIER-Framework
executes the plugin in a separate Docker container for every run of a test suite
[7]. Our Dockerfile contains all the commands needed to reproduce our Docker
image and is available as part of the replication package [4].

Once the plugin has finished performing the test suite runs, CANNIER-
Framework determines a ground-truth label yt,ϕ, for every test case t in the
whole subject set, t ∈

⋃
T ∈U T , and flaky test classification problem ϕ. Recall

from Section 3 that these problems are: NOD flaky tests versus the rest of the
test cases (NOD-vs-Rest, ϕ = 1), NOD flaky tests versus victim flaky tests
(NOD-vs-Victim, ϕ = 2), victim flaky tests versus the rest (Victim-vs-Rest,
ϕ = 3), and polluters versus the rest (Polluter-vs-Rest, ϕ = 4). Each problem
has a domain Tϕ ⊆ T , that is the subset of test cases in a given test suite T
that are relevant. Since the problems are binary classifications, they also have
a positive class, T +

ϕ ⊂ Tϕ, and a negative class, T −
ϕ = Tϕ − T +

ϕ . The ground-
truth label for a test case is positive if it is in the positive class of a problem
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Table 2: The four flaky test classification problems. For test suite T , the
domain Tϕ is the subset of T that is relevant to the problem ϕ. For a specific
Tϕ, the negative class for each problem (T −

ϕ ) is the complement of the positive.

ϕ Name Domain (Tϕ) Positive Class (T +
ϕ )

1 NOD-vs-Rest T {t|t ∈ Tϕ, 0 < Bt < NB}
2 NOD-vs-Victim {t|t ∈ T , Bt < NB ∧ St > 0} {t|t ∈ Tϕ, 0 < Bt < NB}
3 Victim-vs-Rest T {t|t ∈ Tϕ, (Bt = 0 ∨Bt = NB) ∧Bt ̸= St}
4 Polluter-vs-Rest T {p|p ∈ Tϕ, ∃v ∈ Tϕ − {p}(op,v ̸= ov)}

(yt,ϕ = 1) and negative otherwise (yt,ϕ = 0). For a test case t belonging to test
suite T , the following equation defines the ground truth label yt,ϕ.

yt,ϕ =

{
0 if t ∈ T −

ϕ

1 if t ∈ T +
ϕ

(3)

For the NOD-vs-Rest problem (ϕ = 1), the positive class is the set of
NOD flaky tests, that we define as those with an inconsistent outcome in
the Baseline mode (0 < Bt < NB). The only test cases that are relevant to
the NOD-vs-Victim problem (ϕ = 2) are those that did not consistently fail
during the runs in the Baseline mode (Bt < NB) and failed at least once in
Shuffle mode (St > 0). The former condition corresponds to the Setup stage of
iDFlakies where such test cases would be excluded from further analysis. The
latter corresponds to the Running stage, where any test case that fails at least
once goes on to the Classification stage. For this problem, the positive class is
also the set of NOD flaky tests. For the Victim-vs-Rest problem (ϕ = 3), the
positive class is the set of test cases with a consistent outcome in the Baseline
mode (Bt = 0 ∨ Bt = NB) and an inconsistent outcome in the Shuffle mode
(Bt ̸= St). This represents the set of victims. Finally, for the Polluter-vs-Rest
problem (ϕ = 4), the positive class is the set of test cases that behaved as
polluters in the Victim mode. Table 2 gives a definition of each problem.

4.2.2 Model Training and Evaluation Procedure

CANNIER-Framework follows a general machine learning pipeline for
model training and evaluation. The pipeline leaves the specific model and
data balancing technique unspecified, such that it can be instantiated with a
choice for both of these components to create a concrete pipeline. The pipeline
performs stratified 10-folds cross validation. This creates ten folds where 90%
of the test cases in the whole subject set are for training and the other 10%
are for evaluation. The class proportion of each fold roughly follows that of the
whole subject set, and since that is highly imbalanced for every classification
problem, the framework applies the data balancing technique to the training
set only [31]. For each fold, the framework fits the machine learning model
with the training set and applies it to every test case in the evaluation set. For
a given problem ϕ, this results in a predicted probability P (yt,ϕ = 1|Xt(I)), of



Evaluating Flaky Test Detection Combining Rerunning and ML Models 13

⋃
T ∈U T

X1(I) y1,ϕ

t1

X2(I) y2,ϕ

t2

X3(I) y3,ϕ

t3

Stratified K-Folds

X2(I) y2,ϕ

X3(I) y3,ϕ

X1(I) y1,ϕ

Training

Evaluation

X1(I) y1,ϕ

X3(I) y3,ϕ

X2(I) y2,ϕ

Training

Evaluation

X1(I) y1,ϕ

X2(I) y2,ϕ

X3(I) y3,ϕ

Training

Evaluation

Xi(I) yi,ϕ

X1(I) y1,ϕ

Training

Evaluation

Xj(I) yj,ϕ

X2(I) y2,ϕ

Training

Evaluation

Xk(I) yk,ϕ

X3(I) y3,ϕ

Training

Evaluation

Data Balancing Data Balancing Data Balancing

X2(I) y2,ϕ

X3(I) y3,ϕ

X1(I) y1,ϕ

X3(I) y3,ϕ

X1(I) y1,ϕ

X2(I) y2,ϕ

Model Model Model

P (y1,ϕ=1|X1(I)) P (y2,ϕ=1|X2(I)) P (y3,ϕ=1|X3(I))

Fig. 3: CANNIER-Framework performs stratified k-folds cross validation
upon the set of all test cases in the subject set,

⋃
T ∈U T . Following this, it

applies a data balancing technique to the training portion of each fold. The
framework then trains a machine learning model using the mean feature vec-
tors Xt(I), and ground-truth labels yt,ϕ, of every test case t in each training
portion. Finally, for each fold, CANNIER-Framework applies the trained
model to the feature vectors of every test case in the evaluation portion. Since
the evaluation portion of each fold is unique, every test case ends up with a
predicted probability of being in the positive class, P (yt,ϕ = 1|Xt(I)).
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each test case in the evaluation set being of the positive class. Since the evalu-
ation portion of every fold is unique, after ten folds each test case in the whole
subject set has a prediction. Fig. 3 offers an overview of the general pipeline.
Given a lower-threshold ωl and an upper-threshold ωu on the predicted prob-
ability as further inputs, CANNIER-Framework assigns a predicted label
zt,ϕ(I, ωl, ωu), to every test case, as previously shown in Fig. 1. The following
equation defines the predicted label for a test case, denoted zt,ϕ.

zt,ϕ(I, ωl, ωu) =

 0 if P (yt,ϕ = 1|Xt(I)) < ωl

1 if P (yt,ϕ = 1|Xt(I)) ≥ ωu

yt,ϕ if ωl ≤ P (yt,ϕ = 1|Xt(I)) < ωu

(4)

Using the ground-truth and predicted labels for each test case in a given
test suite T , the framework calculates the frequencies of the four confusion
matrix categories: true-positive (TP), false-positive (FP), false-negative (FN),
and true-negative (TN). From these, it calculates the Matthews correlation
coefficient (MCC) to assess the detection performance of the machine learning
model for a given problem ϕ. The possible values of MCC are the closed real
range between -1 and 1, where 1 indicates a model with perfect agreement
between the ground-truth labels and the predicted labels and 0 indicates a
model that is no better than random guessing of the predicted labels. A model
with an MCC of -1 indicates perfect disagreement between the ground-truth
labels and the predicted labels, such that taking a model with an MCC of 1 and
inverting the predicted labels would yield an MCC of -1. We selected MCC
as the overall performance metric, as opposed to F1 score, because it only
produces a high value if the model performs well in terms of all four confusion
matrix categories, whereas F1 score ignores true-negatives [32]. See Fig. 4 for
a summary of how CANNIER-Framework combines pytest-CANNIER
and the general machine learning pipeline from Fig. 3 to produce this data. The
following equation defines MCCTϕ

with respect to the four confusion matrix
categories respectively denoted as TPTϕ

, FPTϕ
, FNTϕ

, and TNTϕ
.

TPTϕ
(I, ωl, ωu) =

∑
t∈Tϕ

yt,ϕ zt,ϕ(I, ωl, ωu),

FPTϕ
(I, ωl, ωu) =

∑
t∈Tϕ

[1− yt,ϕ] zt,ϕ(I, ωl, ωu),

FNTϕ
(I, ωl, ωu) =

∑
t∈Tϕ

yt,ϕ [1− zt,ϕ(I, ωl, ωu)],

TNTϕ
(I, ωl, ωu) =

∑
t∈Tϕ

[1− yt,ϕ] [1− zt,ϕ(I, ωl, ωu)],

MCCTϕ
(I, ωl, ωu) =

TPTϕ
TNTϕ

− FPTϕ
FNTϕ√

(TPTϕ
+ FPTϕ

)(TPTϕ
+ FNTϕ

)(TNTϕ
+ FPTϕ

)(TNTϕ
+ FNTϕ

)

(5)
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I

b1 b2 b3 o3,1o1 o2,1s1 s2 s3 x1 x2 x3

Equ. 1 Equ. 2

Fig. 2

Equ. 1

TPTϕ
(I, ωl, ωu)

FPTϕ
(I, ωl, ωu)

FNTϕ
(I, ωl, ωu)

TNTϕ
(I, ωl, ωu)

MCCTϕ
(I, ωl, ωu)

X1(I) X2(I) X3(I)

Equ. 5

Fig. 3

Equ. 3

Equ. 4

ωl

ωu

P (y3,ϕ = 1|X3(I))

P (y2,ϕ = 1|X2(I))

P (y1,ϕ = 1|X1(I))

z3,ϕ(I, ωl, ωu)

z2,ϕ(I, ωl, ωu)

z1,ϕ(I, ωl, ωu)

y3,ϕy2,ϕy1,ϕ

S3S2S1B3B2B1

t1 t2 t3

T1
t4 t5 t6

T2
t7 t8 t9

T3
U

Fig. 4: An overview of how CANNIER-Framework combines pytest-
CANNIER and the general machine learning pipeline, with subject set U ,
random sample I, and thresholds ωl and ωu as input. It references previously
defined figures and equations (e.g., Equ. 1 through 5 and Fig. 2 and 3).
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4.2.3 Technique Evaluation Procedure

CANNIER-Framework evaluates the application of CANNIER to Re-
run (CANNIER+Rerun), the Classification stage of iDFlakies (CAN-
NIER+iDFClass), and Pairwise (CANNIER+Pairwise). We developed
a mathematical model, that we implemented within the framework, to esti-
mate the detection performance and single-core time cost associated with a
set of parameters for the three techniques. CANNIER-Framework uses the
ground-truth labels and predicted probabilities for each test from the NOD-
vs-Rest problem (ϕ = 1) to model CANNIER+Rerun. It uses the data from
the NOD-vs-Victim problem (ϕ = 2) to model CANNIER+iDFClass in
an equivalent fashion. In both of these cases, the ground-truth labels repre-
sent the output from the “Rerun/iDFClass” block and the predicted prob-
abilities represent the output from the “Model” block in Fig. 1a. The pa-
rameters of CANNIER+Rerun are the lower- and upper-thresholds on the
model prediction, ωl and ωu, the sample size to produce the mean feature
vectors for each test case, denoted nF , and the maximum number of times
to execute a test case without observing an inconsistent outcome, written as
Rmax . For CANNIER+iDFClass, the parameters are ωl, ωu, nF , and the
percentage of additional failures to recheck, denoted γ. The framework uses
the outcomes from the Victim mode and the predicted probabilities from the
Victim-vs-Rest (ϕ = 3) and Polluter-vs-Rest (ϕ = 4) problems to model CAN-
NIER+Pairwise. The outcomes represent the “Pairwise” block and the pre-
dicted probabilities represent the “Victim model” and “Polluter model” blocks
in Fig. 1b. For CANNIER+Pairwise, the parameters are the threshold for
the victim model ωV , the threshold for the polluter model ωP , and nF .

Given a random sample I of size nF along with ωl and ωu, CANNIER-
Framework estimates the detection performance of CANNIER+Rerun
and CANNIER+iDFClass as an MCC value. For every test case t in a given
test suite T , the framework needs its individual time cost Ct, and the number
of times Rerun is expected to execute it Rt(I, ωl, ωu), to estimate the time
cost of CANNIER+Rerun, CRerun

T (I, ωl, ωu). It can find Ct from the output
of pytest-CANNIER in the Features mode, since this is the third feature in
Table 1. As for Rt(I, ωl, ωu), when P (yt,1 = 1|Xt(I)) is not in the ambiguous
region between ωl and ωu, CANNIER+Rerun does not delegate to Rerun
and so it never executes t (Rt(I, ωl, ωu) = 0). Otherwise, when yt,1 = 0, Re-
run would execute t exactly Rmax times since t is not NOD flaky and therefore
Rerun would never observe an inconsistent outcome (Rt(I, ωl, ωu) = Rmax ).
If yt,1 = 1, Rerun would execute t until it either observes an inconsistent
outcome or reaches a limit of Rmax runs. We refer to the final run number
where either of these conditions are met as rt. In this case, Rt(I, ωl, ωu) is the
expected value of the discrete, finite distribution P (rt = x). The probability
of t giving an inconsistent outcome after exactly x runs is Exact(t, x). This
is the probability of t failing x − 1 times and then passing once, or passing
x − 1 times and then failing once. When x < Rmax , P (rt = x) = Exact(t, x).
However, when x = Rmax , P (rt = x) is the probability of t giving an in-



Evaluating Flaky Test Detection Combining Rerunning and ML Models 17

consistent outcome after exactly Rmax runs, Exact(t, Rmax ), or not giving an
inconsistent outcome after reaching the limit of Rmax runs. Where E[P ] is
the expected value of the distribution P , the definition of the time cost of
CANNIER+Rerun, denoted CRerun

T , is given by the following equation.

Ct =
1

NF

NF∑
i=1

xt,i,3,

Exact(t, x) =

(
Bt

NB

)x−1 (
1−

Bt

NB

)
+

(
1−

Bt

NB

)x−1 Bt

NB
,

P (rt = x) =

{
Exact(t, x) if 1 < x < Rmax

Exact(t, Rmax) + (1−
∑Rmax

r=2 Exact(t, x)) if x = Rmax
,

Rt(I, ωl, ωu) =

 0 if P (yt,1 = 1|Xt(I)) < ωl ∨ P (yt,1 = 1|Xt(I)) ≥ ωu

Rmax if ωl ≤ P (yt,1 = 1|Xt(I)) < ωu ∧ yt,1 = 0
E[P (rt = x)] if ωl ≤ P (yt,1 = 1|Xt(I)) < ωu ∧ yt,1 = 1

,

CRerun
T (I, ωl, ωu) =

∑
t∈T

Ct Rt(I, ωl, ωu)

(6)

To estimate the time cost of CANNIER+iDFClass, CiDFClass
T (I, ωl, ωu),

for a given test suite T , CANNIER-Framework requires the number
of times that iDFClass is expected to attempt to classify each test case
t ∈ T2 as either NOD or a victim, Γt(I, ωl, ωu). As before, when P (yt,2 =
1|Xt(I, ωl, ωu)) is not in the ambiguous region, CANNIER+iDFClass does
not delegate to iDFClass and so it never classifies t (Γt(I, ωl, ωu) = 0). Oth-
erwise, iDFClass will classify a test case after its first failure during the
Classification stage and will reclassify a percentage of the additional failures
as determined by γ. We assume that any test case undergoing classification
by iDFClass has a uniform probability of appearing at any position in the
original and modified test run orders. Under this assumption, the mean length
of the truncated original and modified orders would both be equal to half the
size of the test suite. Therefore, the mean time cost of classifying a single
test case is equal to that of one full test suite run, as given by the following
equation.

Γt(I, ωl, ωu) =

{
0 if P (yt,2 = 1|Xt(I)) < ωl ∨ P (yt,2 = 1|Xt(I)) ≥ ωu

1 + γ(St − 1) if ωl ≤ P (yt,2 = 1|Xt(I)) < ωu
,

CiDFClass
T (I, ωl, ωu) =

∑
t∈T2

Γt(I, ωl, ωu)

 ∑
t∈T

Ct

(7)

CANNIER-Framework estimates the detection performance of CAN-
NIER+Pairwise as the ratio of victim-polluter pairs that would be detected
by Pairwise to all such pairs in a given test suite T . We selected this simpler
metric, as opposed to MCC, because we assume that CANNIER+Pairwise
will never incorrectly label a pair of test cases as having a victim-polluter
relationship when they do not (false-positive). Under this assumption, this
metric is equivalent to true-positive rate (TPR), also known as sensitivity. It
has a range between 0 and 1, where 0 indicates that CANNIER+Pairwise
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detected none of the victim-polluter pairs and 1 indicates that it detected all
of them. Since we designed the framework to only consider non-NOD flaky
tests as candidate victims, such that they all have a reliable expected out-
come, we have sufficient assurance that the assumption holds. Recall from
Section 3.3 that CANNIER+Pairwise builds a set of victims TV (I, ωV ),
and polluters TP (I, ωP ), given victim- and polluter-thresholds ωV and ωP .
It then executes Pairwise with only the pairs in TP (I, ωP ) × TV (I, ωV ).
CANNIER-Framework builds these sets using the predicted probabilities
from the Victim-vs-Rest (ϕ = 3) and Polluter-vs-Rest (ϕ = 4) problems. The
framework calculates TPR by dividing the number of victim-polluter pairs in
TP (I, ωP )×TV (I, ωV ) by the number of such pairs in T ×T . In other words, it
divides the number of true-positives (TP) by the number of positives (P). To
know how many pairs are in both sets, CANNIER-Framework relies on the
outcomes recorded by pytest-CANNIER in the Victim mode. The frame-
work estimates the time cost of CANNIER+Pairwise, CPairwise

T (I, ωV , ωP),
based on the sizes of both sets and the individual time costs of their members.
The definition of TPRT and the time cost of CANNIER+Pairwise, denoted
CPairwise

T , is provided by the following equation.

TV (I, ωV ) = {v|v ∈ T , P (yt,3 = 1|Xt(I)) >= ωV },
TP (I, ωP ) = {p|p ∈ T , P (yt,4 = 1|Xt(I)) >= ωP },

TPT (I, ωV , ωP ) =
∑

p∈TP (I,ωP )

|{v|v ∈ TV (I, ωV )− {p}, op,v ̸= ov}|,

PT =
∑
p∈T

|{v|v ∈ T − {p}, op,v ̸= ov}|,

TPRT (I, ωV , ωP ) =
TPT (I, ωV , ωP )

PT
,

CPairwise
T (I, ωV , ωP ) =

|TP (I, ωP )|
∑

v∈TV (I,ωV )

Cv

+

|TV (I, ωV )|
∑

p∈TP (I,ωP )

Cp


(8)

5 Empirical Evaluation

We conducted experiments to answer the following research questions:

RQ1. How effective is machine learning-based flaky test detection?

RQ2. What impact do mean feature vectors have on the performance of ma-
chine learning-based flaky test detection?

RQ3. What contribution do individual features have on the output values of
machine learning models for detecting flaky tests?

RQ4. What impact does CANNIER have on the performance and time cost
of rerunning-based flaky test detection?
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Table 3: The 30 open-source Python projects examined in this paper’s study.
The Tests column is the total number of test cases. The following three in-
dicate the number of NOD flaky tests, Victims, and Polluters. The Pairs
column gives the number of victim-polluter pairs. The Cost column is the
combined mean time cost of every test case in seconds. The final row gives the
totals for the whole subject set. Since pytest-CANNIER identifies polluters
the same way as Pairwise, only considering pairs of test cases, polluters in-
volved in more complex order-dependencies are not included. This is why the
table shows that some projects appear to have victims without polluters.

GitHub Repository Tests NOD Victims Polluters Pairs Cost (s)

apache/airflow 3251 66 279 3241 45819 7.77× 102

celery/celery 2332 - 15 17 24 1.31× 102

quantumlib/Cirq 12048 - 17 2 32 8.67× 102

conan-io/conan 3687 - 13 13 18 1.48× 103

dask/dask 8015 1 1 37 37 1.34× 103

encode/django-rest-framework 1402 - 1 3 3 2.63× 103

spesmilo/electrum 542 1 1 2 2 5.99× 101

Flexget/Flexget 1330 1 4 3 4 1.73× 103

fonttools/fonttools 3448 1 42 - - 1.19× 102

graphql-python/graphene 346 - 1 1 1 1.73× 101

facebookresearch/hydra 1538 - 19 348 952 1.77× 102

HypothesisWorks/hypothesis 4348 5 6 3699 7401 3.92× 103

ipython/ipython 807 6 297 796 118869 1.10× 102

celery/kombu 1024 2 23 20 63 3.62× 101

apache/libcloud 9809 3 133 471 1686 2.66× 102

Delgan/loguru 1255 4 21 6 26 6.23× 101

mitmproxy/mitmproxy 1232 - 18 338 735 3.12× 101

python-pillow/Pillow 2567 - 26 2 26 9.38× 101

PrefectHQ/prefect 7035 25 20 227 230 1.56× 103

PyGithub/PyGithub 711 - 4 678 2712 5.55× 101

Pylons/pyramid 2633 - 4 252 383 5.98× 101

psf/requests 535 5 - - - 1.40× 102

saltstack/salt 2672 12 4 65 65 2.52× 102

scikit-image/scikit-image 6275 - 12 5882 5890 2.54× 103

mwaskom/seaborn 1020 - 8 1 7 5.01× 102

pypa/setuptools 694 1 23 4 4 2.08× 102

sunpy/sunpy 1857 - 2 9 9 4.31× 102

tornadoweb/tornado 1159 1 1 - - 4.03× 101

urllib3/urllib3 1320 15 1 - - 8.57× 101

xonsh/xonsh 4776 9 19 3114 9459 1.81× 102

Overall 89668 158 1015 19231 194457 1.99× 104

5.1 Subject Set

For this paper’s subject set, we used the test suites of the 26 open-source
Python projects studied in our previous work [55]2. We selected these at ran-
dom from a list of projects critical to open-source infrastructure created by

2 We only reused the projects themselves as subjects. We did not reuse any of the data
from our previous study.
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the Open Source Security Foundation of [12]. For this paper, we randomly se-
lected four more projects to improve the generalizability of the results. We used
CANNIER-Framework to produce a dataset from these 30 test suites that
contains 89,668 tests. We set the framework to perform 2,500 runs of each test
suite in the Baseline mode of pytest-CANNIER (NB = 2500), 2,500 runs in
the Shuffle mode (NS = 2500), and 30 runs in the Features mode (NF = 30).
Table 3 shows each project’s GitHub repository; the total number of tests (|T |);
the number of NOD flaky tests (|T +

1 |), victims (|T +
3 |), and polluters (|T +

4 |);
the number of victim-polluter pairs (

∑
p∈T |{v|v ∈ T − {p}, op,v ̸= ov}|); and

the combined mean time cost of every test in seconds (
∑

t∈T
[

1
NF

∑NF

i=1 xt,i,3

]
).

The projects of our subject set cover a wide variety of topics. All are hosted
on the Python Package Index [1] that allows developers to associate them with
zero or more “topic classifiers”. Topic classifiers are multi-level, for example:
Software Development :: Libraries :: Python Modules. A developer may also
specify a parent classifier on its own (e.g., just Software Development). Table
4 lists the topic classifiers of the 30 Python subjects. It also provides the
frequencies of each classifier, taking into account their hierarchical nature.

5.2 Methodology

5.2.1 RQ1. How effective is machine learning-based flaky test detection?

The motivation behind this question is to establish a baseline for the per-
formance of machine learning models for detecting flaky tests. While several
studies have addressed this question for NOD flaky tests [22,25,55,58], and
we addressed it for victims in our previous work [55], no previous study has
addressed it for polluters. It is important to consider polluters when answering
RQ1 since they offer developers useful information when repairing victim flaky
tests and are a necessary input to techniques for mitigating them [48,53,65].

We used CANNIER-Framework to evaluate 24 concrete machine learn-
ing pipelines for each of the four flaky test classification problems. We derived
these from the combination of two choices of model type, four choices of model
configuration, and three choices of data balancing technique. These choices
form the concrete instantiations of the “Data Balancing” and “Model” blocks
in our general pipeline from Fig. 3. The two model types we considered were
random forest [27,66] and extra trees [38] (the latter being a more randomized
variant of the former). These are ensemble models that fit a number of decision
trees [62] on subsets of the training data. We selected these particular model
types due to their success in our previous work [55] and the related work of
other authors [22]. The choices of model configuration were four values for the
number of decision trees used by the random forest or extra trees model. These
values were 25, 50, 75, and 100. In our previous work, we only considered ran-
dom forest and extra trees models with 100 decision trees — the default value
of our selected implementation [16]. Finally, for the three choices of data bal-
ancing, we evaluated the synthetic minority oversampling technique (SMOTE)
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[31], SMOTE combined with edited nearest-neighbors (SMOTE+ENN), and
SMOTE with Tomek links [68] (SMOTE+Tomek). SMOTE performs over-
sampling, meaning it produces synthetic data points of the minority class via
interpolation. The ENN and Tomek techniques on their own perform under-
sampling, meaning they remove data points of the majority class based on
similarity with their neighbors. The combination of these with SMOTE pro-
duces a hybrid balancing approach.

For each of the 24 × 4 = 96 concrete machine learning pipelines, we fixed
the feature sample size at a single sample (nF = 1) and had the framework
repeat the model training and evaluation procedure 30 times (see Fig. 3), using
a different random sample I to produce the mean feature vectors every time.
In each instance, this resulted in 30 values of P (yt,ϕ = 1) for every test case
t and problem ϕ. To evaluate the performance of the pipelines, CANNIER-
Framework needed predicted labels to calculate the confusion matrix cate-
gory frequencies and MCC against the ground-truth labels for each problem.
To produce the predicted labels to address this research question, we substi-
tuted zt,ϕ(I, ωl, ωu) in Equation 5 for the following definition of zt,ϕ(I) that
assigns a test case to its most likely class:

zt,ϕ(I) =
{
0 if P (yt,ϕ = 1|Xt(I)) < 0.5
1 if P (yt,ϕ = 1|Xt(I)) ≥ 0.5

(9)

With these predicted labels, we used CANNIER-Framework to calcu-
late the confusion matrix category frequencies and the MCC of the 96 pipelines
with respect to each of the 30 subject test suites in turn. We also had the frame-
work calculate this with respect to the whole subject set for each pipeline by
summing the category frequencies for each project and calculating the overall
MCC from this total. This is to provide an individual assessment with re-
spect to each test suite as well as an overview for the whole subject set. For
the per-project and overall evaluations, CANNIER-Framework calculated
mean values for the category frequencies and the MCC over the 30 repeats
of model training and evaluation. This is to offer an evaluation that is more
reliable given the non-determinism inherent to the machine learning models,
the data balancing techniques, and potentially the dynamic feature values.

5.2.2 RQ2. What impact do mean feature vectors have on the performance of
machine learning-based flaky test detection?

In previous studies on machine learning-based flaky test detection with dy-
namic test case features [22,55], researchers performed only a single instru-
mented test suite run to create the feature vectors. The rationale for this
question is to investigate the impact of using feature vectors that are the
mean from multiple instrumented test suite runs. In the context of this study,
that is multiple runs in the Features mode of pytest-CANNIER. This is to
mitigate against the possible variance in the dynamic features. As an example,
previous studies have found that the line coverage of test cases can vary across
repeated executions [43,63,69]. Since three features in Table 1 are based on
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Table 4: The topic classifiers of the subject projects and their frequencies.
If a project declares derived classifiers we also incremented the frequencies of
the parent classifiers. For a example, if a project declares Internet, Internet
:: Proxy Servers, and Software Development :: Libraries, we would increment
the frequencies of Internet, Internet :: Proxy Servers, Software Development,
and Software Development :: Libraries.

Topic Classifier Frequency

Communications 1
Education 1
Education :: Testing 1
Internet 5
Internet :: Proxy Servers 1
Internet :: WWW/HTTP 5
Internet :: WWW/HTTP :: WSGI 1
Multimedia 3
Multimedia :: Graphics 3
Multimedia :: Graphics :: Capture 1
Multimedia :: Graphics :: Capture :: Digital Camera 1
Multimedia :: Graphics :: Capture :: Screen Capture 1
Multimedia :: Graphics :: Graphics Conversion 2
Multimedia :: Graphics :: Viewers 1
Scientific/Engineering 4
Scientific/Engineering :: Physics 1
Scientific/Engineering :: Visualization 1
Security 1
Software Development 12
Software Development :: Build Tools 1
Software Development :: Libraries 7
Software Development :: Libraries :: Python Modules 3
Software Development :: Object Brokering 1
Software Development :: Testing 2
System 9
System :: Archiving 1
System :: Archiving :: Packaging 1
System :: Clustering 1
System :: Distributed Computing 4
System :: Logging 1
System :: Monitoring 1
System :: Networking 2
System :: Networking :: Monitoring 1
System :: Shells 1
Text Processing 1
Text Processing :: Fonts 1
Utilities 1

line coverage, we expect there to be some degree of noise in their values for
each test case that could impact the detection performance of the model.

We took the best machine learning pipeline (in terms of the overall MCC)
for each classification problem from the previous research question and fol-
lowed the same methodology for training and evaluation, except we gave
CANNIER-Framework a range of values for nF to produce I between 1
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and 15 samples inclusive. With 30 repeats of model training and evaluation
for each value of nF , this resulted in 15 × 30 = 450 rounds of stratified 10-
fold cross validation for each problem. This process enabled us to investigate
the correlation between the number of repeated measurements to produce the
mean feature vectors and the MCC of the resultant model.

5.2.3 RQ3. What contribution do individual features have on the output
values of machine learning models for detecting flaky tests?

In the interest of model explainability, we set out to investigate the impact of
each individual feature in Table 1. To address this question, we applied the
Shapely Additive Explanations (SHAP) technique [49]. It leverages concepts
from game theory to quantify the contribution of an individual feature to
the output value of a machine learning model for an individual data point.
As inputs, SHAP takes a feature matrix and a model and returns a matrix
of SHAP values in the same shape as the feature matrix. The SHAP value
at (i, j) in the matrix represents the contribution of the jth feature on the
model output for the ith data point relative to the mean output value over
the dataset. This is such that summing the rows of the SHAP value matrix
and adding the mean output value gives the original model output values.

In the context of this study, the features are those in Table 1, the data
points are test cases, and the model output values are the predicted prob-
abilities of each test case being in the positive class for a given flaky test
classification problem. As the feature matrix, we used the mean feature vector
for each test case over the 30 runs of pytest-CANNIER in the Features
mode (nF = NF ). As the machine learning model, we used CANNIER-
Framework to train the best pipeline from RQ1 using the mean feature
matrix. We did this for each of the four classification problems.

Once we had a SHAP value matrix for each problem, we ranked every
feature in terms of their mean absolute SHAP value over every test case. A
high value would indicate that the feature has a significant impact on the
model’s decision (regardless of whether the impact is in favour of the negative
class or the positive) and a low value would suggest the opposite. We then
retrained the best pipeline for each problem with just the top 15, 12, 9, 6,
and 3 features (with 30 repeats in each case). This is to observe the effect of
dropping the less impactful features on the performance of the model.

5.2.4 RQ4. What impact does CANNIER have on the performance and time
cost of rerunning-based flaky test detection?

The motivation behind this research question is to investigate if CANNIER
is able to reduce the time cost of rerunning-based flaky test detection tech-
niques while maintaining good detection performance. For the application of
CANNIER to the three techniques from Section 2.1, we used CANNIER-
Framework to calculate the detection performance and single-core time cost
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associated with every point in a sample of their parameter spaces. For CAN-
NIER+Rerun and CANNIER+iDFClass, the space represents the values
of the 3-tuple (ωl, ωu, nF ), that is, the lower-threshold, the upper-threshold,
and the number of samples to produce the mean feature vectors. In the case
of CANNIER+Rerun, since Rmax (the maximum number of times to ex-
ecute a test case without observing an inconsistent outcome) is a parame-
ter of the underlying Rerun technique, rather than a parameter introduced
by CANNIER, we kept its value fixed at NB (the number of test suite
runs in the Baseline mode: 2,500). Similarly, for CANNIER+iDFClass,
we fixed the value of γ (the percentage of additional failures to recheck)
to 20% because it is a parameter of iDFClass and not one introduced by
CANNIER. This particular value was recommended by the authors of iD-
Flakies [47]. For the detection performance and time cost of a given point
for CANNIER+Rerun/CANNIER+iDFClass, CANNIER-Framework
calculated the mean over the 30 sets of predicted probabilities for the NOD-
vs-Rest/NOD-vs-Victim problem from the 30 repeats of model training and
evaluation for the given value of nF from RQ2. ForCANNIER+Pairwise, the
parameter space represents (ωV , ωP , nF ), the victim-threshold, the polluter-
threshold, and the number of samples once more. In this case, the framework
calculated the mean detection performance and time cost over 30 random pairs
of the 30 sets of predicted probabilities for the Victim-vs-Rest problem and
the 30 sets for the Polluter-vs-Rest problem for the given value of nF .

For the sample of points in (ωl, ωu, nF ), we used the values for ωl from 0
to 1 inclusive with a step of 0.01, the values for ωu from ωl to 1.01 inclusive
with a step of 0.01, and the values for nF in the closed integer range from 1
to 15, except when ωl = 0 ∧ ωu = 1.01, in which case nF = 0. The reason for
starting from ωl and going up to 1.01 for ωu is to ensure that ωl ≤ ωu always
holds and so that CANNIER-Framework evaluates the points where there
is no upper-threshold on P (yt,1 = 1|Xt(I)) (see the second clause of Equation
4). The reason that nF = 0 when ωl = 0 ∧ ωu = 1.01 is to indicate that the
machine learning model, and therefore feature collection, is redundant because
the ambiguous region is the entire range of P (yt,1 = 1|Xt(I)) under these con-
ditions. Therefore, CANNIER+Rerun and CANNIER+iDFClass reduce
to the original rerunning-based Rerun and iDFClass respectively (see the
third clause of Equation 4). As the sample of points in (ωV , ωP , nF ), we used
the values for both ωV and ωP from 0 to 1 inclusive with a step of 0.01. This
excludes 1.01, since when one or both thresholds is greater than 1, the set of
victims and/or polluters is empty and therefore Pairwise has nothing to do
since TV (I, ωV )×TP (I, ωP ) = ∅. For nF , the framework considers from 1 to 15,
except when ωV = ωP = 0, where nF = 0. The reason that nF = 0 in this case
is to indicate that the model is redundant because TV (I, ωV ) = TP (I, ωP ) = T
and thus CANNIER+Pairwise reduces to original Pairwise.

We had CANNIER-Framework add the time taken to collect features
to the overall time cost for each point. Since many features are dynamic,
they require nF test suite runs to measure, making the time cost of doing so
nF

∑
t∈T Ct for some test suite T . For the points where nF = 0, where the
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other parameters render the machine learning model redundant, this additional
time cost is zero. We did not consider the time cost associated with applying
the model to each test case because it is negligible relative to the time taken
to execute the test suite [55]. We also did not consider the time taken to train
the model as part of the time cost of applying it. This is because the model
only needs to be trained once and can then be applied any number of times,
making training an off-line stage with a cost that can be amortized across uses.

We used CANNIER-Framework to compute the two-dimensional
Pareto fronts of detection performance and time cost, with respect to the
whole subject set, for the sample of points for CANNIER+Rerun, CAN-
NIER+iDFClass, and CANNIER+Pairwise. In this context, the Pareto
front represents the subset of points such that, for each point, the detection
performance is the greatest compared to all other points with the same time
cost. To answer this research question, we compared the detection performance
and time cost associated with the point representing the balanced application
of CANNIER to the point where it reduces to the original rerunning-based
detection technique, for each of the three fronts. As the point representing
balanced CANNIER, we used the knee point. The knee point is the point
with the smallest Euclidean distance to the utopia point on the Pareto front
[73]. The utopia point represents a “perfect” solution that doesn’t necessarily
exist. In the context of this study, that would be the point with a detection
performance of 1, for either MCC or true-positive rate (TPR), and a time
cost of 0 seconds. For CANNIER+Rerun and CANNIER+iDFClass, we
also considered the point where they reduce to pure machine learning-based
detection as an additional baseline. For this special case, we used the point
on the Pareto front with the greatest MCC that also satisfies ωl = ωu. For
all points that satisfy this condition, the techniques never defer to Rerun or
iDFClass because there is no ambiguous region between the two thresholds.
For CANNIER+Pairwise, there is no such point, because it only limits the
problem space for Pairwise but nevertheless always defers to it.

5.3 Threats to Validity

When deciding the ground-truth labels, CANNIER-Framework could in-
correctly label some flaky tests as non-flaky. We used the framework to execute
every test suite 2,500 times in their original test run orders to identify NOD
flaky tests and 2,500 times in shuffled orders to identify victims. Given the
non-deterministic nature of flaky tests, it is generally not possible to label
a test case as non-flaky with complete certainty [42]. We mitigated this is-
sue by having CANNIER-Framework perform as many reruns as possible
within the limits of our available computational resources. In total, this stage
required over six weeks of computational time on a computer with a 24-core
AMD Ryzen 5900X CPU. While confidence in the label increases with the
number of reruns, so too does the computational cost. In our previous work
[55], we found the relationship between the number of detected flaky tests
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and the number of test suite reruns to be sublinear. This finding supports an-
other previous study, the authors of which identified a similar relationship [22].
This implies that continuing to re-execute a test suite gives diminishing re-
turns with respect to the confidence of labelling a test case as non-flaky. This
encourages us that the overall results of this paper would be the same had
the plugin performed more reruns, because it’s unlikely that it would have
detected significantly more flaky tests. Furthermore, pytest-CANNIER is
unlikely to detect certain flaky test categories by rerunning alone. For exam-
ple “implementation-dependent” flaky tests may require changes to standard
library implementations to manifest [64,75]. The only category we made spe-
cific arrangements to detect were victims and their polluters; other special
categories are out of the scope of this paper’s empirical study.

Our concrete machine learning pipelines of the random forest/extra trees
model with SMOTE data balancing and the 18 features in Table 1 may unfairly
represent machine learning-based flaky test detection. A whole host of previous
studies [22,28,29,41,58,60] identified random forest to be the most suitable
type of machine learning model for detecting flaky tests. In our previous work
[55], we found that the extra trees model, a variant of random forest, was better
suited for detecting flaky tests in some cases. Furthermore, the 18 features are
based on the 16 features of Flake16 that we found to yield better detection
performance when used to encode test cases compared to the previous state-
of-the-art feature set [22]. This implies that our choice of pipeline and features
is among the most suitable for detecting flaky tests currently in the literature.

There is a chance that CANNIER-Framework and pytest-CANNIER
contain bugs that may go on to influence the results of our evaluation. Nat-
urally, it is impossible to be totally sure that any non-trivial software system
is totally free of bugs. However, we made sure to use well-established Python
libraries for the bulk of the framework’s important functionality. These in-
cluded Coverage.py [6] to measure line coverage, psutil [13] to measure
many other dynamic test case properties, Radon [19] to measure source code
metrics, scikit-learn [16] for an implementation of the random forest and
extra trees model, and shap [20] to calculate the SHAP value matrices for
RQ3. These are all popular open-source projects with many contributors, giv-
ing us confidence that any bugs would be identified, documented, and patched
in a timely manner. We also wrote unit tests for greater confidence in the
bespoke elements of CANNIER-Framework and pytest-CANNIER.

It is possible that the results of our study would not generalize to other
Python projects outside of the 30 that we sampled, or to projects written in
other programming languages. We randomly sampled 30 Python projects from
a list of the top-200 most critical to open-source infrastructure, as determined
by the Open Source Security Foundation [12]. Part of their metric for deter-
mining the criticality of a project is based on how many other projects declare
a dependency on it. Therefore, any issues caused by flaky tests in these projects
could potentially impact a wider portion of the Python ecosystem. Of course,
this does not guarantee that our sample generalizes to all Python projects, but
does give us some assurance that the flaky tests we examined could represent



Evaluating Flaky Test Detection Combining Rerunning and ML Models 27

a more serious problem compared to flaky tests in less critical projects. With-
out extending our subject set to include projects written in other languages,
we cannot make any assurances that our results generalize outside of Python.
Broadly speaking, however, our approach is language-agnostic. Considering
Table 1, our 18 features could apply to almost any commonly used program-
ming language. Therefore, we see no compelling reason to suggest that our
results couldn’t be reproduced with projects written in other languages, such
as Java. In addition, it is possible that individual projects in our subject set
with significantly more test cases than others could bias the overall results.
For example, Airflow had the highest number of NOD flaky tests at 66 —
264% of the second highest. To resolve this concern, CANNIER-Framework
calculated performance metrics with respect to each individual project.

Given the empirical nature of this paper’s study, it may be difficult to re-
produce our results. We took steps to make our methodology as repeatable
as possible. Firstly, we included all scripts and software that we developed to
facilitate this study in the replication package [4]. This includes our Dockerfile
and requirements files for generating Python virtual environments [18]. Sec-
ondly, any aspects of the study that could be impacted by non-determinism,
such as producing the predicted probabilities of test cases being flaky, we re-
peated 30 times. As such, the final results reported in this paper involve taking
the mean across these 30 repeats. Finally, where any aspects of CANNIER-
Framework relied on random number generators (such as when instantiating
machine learning models), we made sure to set the seed to a constant value to
ensure that the results are the same across repeated runs.

6 Results

6.1 RQ1. How effective is machine learning-based flaky test detection?

Table 5 shows the top-12 concrete machine learning pipelines (out of 24) for
each flaky test classification problem in terms of overall MCC. Recall from
Section 5.2.1 that these MCC values are with respect to the entire subject
set and are the mean over 30 repeats of model training and evaluation (see
Equation 5). Extra trees appears to be the best model for the NOD-vs-Rest
and Victim-vs-Rest problems, and pipelines using extra trees are consistently
at the top of these tables. For NOD-vs-Victim and Polluter-vs-Rest, the most
performant model appears to be random forest, though with less consistency.
In terms of data balancing, the best pipelines for each problem used plain
SMOTE. Unlike SMOTE+Tomek, SMOTE+ENN did not make it into the
top-12 for any problem. In all cases, the negative gradient of detection perfor-
mance going down the table is small, such that the difference in overall MCC
between the best pipeline and the 12th best pipeline is not that significant.

Tables 6 and 7 show the per-project and overall confusion matrix category
frequencies (TN, FN, FP, TP) and MCC of the best pipeline for each flaky test
classification problem. Table 6a shows the performance for the NOD-vs-Rest
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Table 5: The top-12 pipelines (out of 24) for each flaky test classification
problem in terms of overall MCC. The MCC values are the mean over 30
repeats of model training and evaluation, rounded to three significant figures.

(a) NOD-vs-Rest

Model Trees Balancing MCC

ExtraTrees 100 SMOTE 0.532
ExtraTrees 100 +Tomek 0.529
ExtraTrees 75 SMOTE 0.527
ExtraTrees 50 SMOTE 0.526
ExtraTrees 25 SMOTE 0.521
ExtraTrees 50 +Tomek 0.519
ExtraTrees 75 +Tomek 0.519
ExtraTrees 25 +Tomek 0.507
RandomForest 100 SMOTE 0.488
RandomForest 75 SMOTE 0.479
RandomForest 50 SMOTE 0.479
RandomForest 25 SMOTE 0.477

(b) NOD-vs-Victim

Model Trees Balancing MCC

RandomForest 75 SMOTE 0.693
RandomForest 100 SMOTE 0.690
ExtraTrees 100 SMOTE 0.689
ExtraTrees 50 SMOTE 0.686
ExtraTrees 75 SMOTE 0.686
RandomForest 50 SMOTE 0.685
RandomForest 75 +Tomek 0.684
RandomForest 25 SMOTE 0.679
RandomForest 100 +Tomek 0.675
ExtraTrees 100 +Tomek 0.673
ExtraTrees 75 +Tomek 0.669
RandomForest 25 +Tomek 0.668

(c) Victim-vs-Rest

Model Trees Balancing MCC

ExtraTrees 75 SMOTE 0.520
ExtraTrees 100 SMOTE 0.519
ExtraTrees 50 SMOTE 0.518
ExtraTrees 100 +Tomek 0.515
ExtraTrees 75 +Tomek 0.513
ExtraTrees 50 +Tomek 0.511
ExtraTrees 25 SMOTE 0.510
ExtraTrees 25 +Tomek 0.502
RandomForest 50 SMOTE 0.501
RandomForest 75 SMOTE 0.498
RandomForest 100 SMOTE 0.498
RandomForest 25 SMOTE 0.490

(d) Polluter-vs-Rest

Model Trees Balancing MCC

RandomForest 100 SMOTE 0.946
RandomForest 75 SMOTE 0.945
RandomForest 50 SMOTE 0.944
RandomForest 25 SMOTE 0.943
RandomForest 100 +Tomek 0.941
ExtraTrees 100 SMOTE 0.941
RandomForest 75 +Tomek 0.940
ExtraTrees 75 SMOTE 0.940
RandomForest 50 +Tomek 0.940
ExtraTrees 50 SMOTE 0.939
RandomForest 25 +Tomek 0.937
ExtraTrees 100 +Tomek 0.937

problem. The table lists relatively few projects with a defined value for MCC
because many in the subject set contain zero or only very few NOD flaky tests
(see Table 3). The overall MCC for this problem is 0.53 and the mean per-
project MCC is close at 0.52. Recall that CANNIER-Framework calculated
the overall MCC from the overall confusion matrix category frequencies, that
are the sum of the per-project frequencies. An MCC of 1 indicates a perfect
model and an MCC of 0 indicates a model no better than random guessing.
Therefore, the detection performance of the best pipeline for this problem was
fairly lackluster. Furthermore, the standard deviation of the per-project MCC
is relatively high at 0.29, suggesting that the performance of the pipeline is
quite variable between projects. This is further evident from the wide range of
MCC values among the different projects. Table 6b shows the results for the
NOD-vs-Victim problem. Once again, the table contains relatively few projects
with an MCC value for the same reason as before. At 0.69, the overall MCC
for this problem is greater than that for NOD-vs-Rest. Also, the standard
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Table 6: The per-project and overall results of the best pipelines from Table 5
for the NOD-vs-Rest (a) and NOD-vs-Victim (b) problems. The tables give the
confusion matrix category frequencies (i.e., column labels TN, FN, FP, TP),
rounded to the nearest integer, and the Matthews correlation coefficient (i.e.,
column label MCC). Captions give the mean (µ) and standard deviation (σ)
of the per-project MCC. Values are the mean over 30 repeats of model training
and evaluation. Dashes indicate that the value is exactly zero. The “⊥” symbol
indicates that the value is not defined, which was caused by a division by zero
when a project does not have any test cases of certain categories.

(a) NOD-vs-Rest (µ = 0.52, σ = 0.29)

Project TN FN FP TP MCC

airflow 3159 26 26 40 0.59
celery 2332 - - - ⊥
Cirq 12048 - - - ⊥
conan 3687 - 0 - ⊥
dask 8014 1 0 - ⊥
django-rest-... 1402 - - - ⊥
electrum 540 1 1 - ⊥
Flexget 1329 1 - - ⊥
fonttools 3447 1 - - ⊥
graphene 346 - - - ⊥
hydra 1538 - - - ⊥
hypothesis 4341 5 2 - 0.00
ipython 800 2 0 4 0.76
kombu 1022 2 - - ⊥
libcloud 9806 3 - - ⊥
loguru 1250 2 1 2 ⊥
mitmproxy 1232 - - - ⊥
Pillow 2567 - 0 - ⊥
prefect 7005 13 5 12 0.58
PyGithub 711 - - - ⊥
pyramid 2633 - - - ⊥
requests 530 2 - 3 0.82
salt 2660 4 0 8 0.82
scikit-image 6275 - 0 - ⊥
seaborn 1020 - - - ⊥
setuptools 693 1 - - ⊥
sunpy 1857 - - - ⊥
tornado 1157 1 1 - ⊥
urllib3 1295 13 10 2 0.16
xonsh 4763 5 4 4 0.45

Overall 89460 83 50 75 0.53

(b) NOD-vs-Victim (µ = 0.55, σ = 0.22)

Project TN FN FP TP MCC

airflow 250 11 25 45 0.66
celery 14 - 1 - ⊥
Cirq 17 - - - ⊥
conan 13 - 0 - ⊥
dask 1 - - - ⊥
django-rest-... 0 - 1 - ⊥
electrum 0 1 1 0 ⊥
Flexget 3 1 1 - ⊥
fonttools 42 - - - ⊥
graphene 1 - - - ⊥
hydra 19 - - - ⊥
hypothesis 6 3 0 0 ⊥
ipython 296 2 1 4 0.71
kombu 23 1 - - ⊥
libcloud 133 3 0 - ⊥
loguru 20 1 1 2 0.55
mitmproxy 6 - 0 - ⊥
Pillow 26 - 0 - ⊥
prefect 17 1 3 16 0.79
PyGithub 4 - - - ⊥
pyramid 4 - - - ⊥
requests - 0 - 4 ⊥
salt 3 1 1 11 0.69
scikit-image 12 - - - ⊥
seaborn 8 - 0 - ⊥
setuptools 23 0 0 1 ⊥
sunpy 2 - - - ⊥
tornado 0 - 1 - ⊥
urllib3 - 3 1 12 0.12
xonsh 14 3 5 6 0.33

Overall 957 32 42 99 0.69

deviation of the per-project MCC is lower at 0.22. However, the mean of 0.55
is considerably lower than the overall MCC.

Table 7a gives the performance for the Victim-vs-Rest problem. At 0.52,
the overall MCC is very close to the mean per-project MCC of 0.51 and is
comparable to that of NOD-vs-Rest. Unlike the previous two problems, there
are many more projects with a defined value for MCC, since most test suites in
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Table 7: The per-project and overall results of the best pipelines from Table
5 for the Victim-vs-Rest (a) and Polluter-vs-Rest (b) problems. See Table 6
caption for more details.

(a) Victim-vs-Rest (µ = 0.51, σ = 0.24)

Project TN FN FP TP MCC

airflow 2880 81 92 198 0.67
celery 2316 9 1 6 0.59
Cirq 12030 3 1 14 0.88
conan 3666 8 8 5 0.38
dask 8013 1 1 - ⊥
django-rest-... 1400 1 1 - ⊥
electrum 539 1 2 - ⊥
Flexget 1325 3 1 1 ⊥
fonttools 3395 6 11 36 0.82
graphene 345 1 0 - ⊥
hydra 1513 13 6 6 0.37
hypothesis 4341 3 1 3 0.57
ipython 377 206 133 91 0.05
kombu 1000 12 1 11 0.68
libcloud 9612 86 64 47 0.38
loguru 1225 5 9 16 0.69
mitmproxy 1213 13 1 5 0.50
Pillow 2530 18 11 8 0.37
prefect 7014 16 1 4 0.40
PyGithub 707 1 0 3 ⊥
pyramid 2629 3 0 1 ⊥
requests 535 - - - ⊥
salt 2668 4 0 - ⊥
scikit-image 6261 5 2 7 0.69
seaborn 1009 8 3 0 ⊥
setuptools 668 5 3 18 0.81
sunpy 1855 2 - - ⊥
tornado 1156 1 2 - 0.00
urllib3 1318 1 1 - ⊥
xonsh 4753 14 4 5 0.36

Overall 88292 529 361 486 0.52

(b) Polluter-vs-Rest (µ = 0.46, σ = 0.34)

Project TN FN FP TP MCC

airflow 0 5 10 3236 0.01
celery 2311 15 4 2 0.20
Cirq 12032 1 14 1 0.12
conan 3621 6 53 7 0.25
dask 7947 0 31 37 0.73
django-rest-... 1397 3 2 - ⊥
electrum 525 2 15 - 0.01
Flexget 1327 3 0 - ⊥
fonttools 3443 - 5 - ⊥
graphene 344 1 1 - ⊥
hydra 1186 13 4 335 0.97
hypothesis 563 11 86 3688 0.91
ipython 7 165 4 631 0.13
kombu 1002 15 2 5 0.42
libcloud 9315 195 23 276 0.73
loguru 1249 6 0 0 ⊥
mitmproxy 880 71 14 267 0.82
Pillow 2534 2 31 0 0.02
prefect 6781 184 27 43 0.33
PyGithub 17 8 16 670 0.58
pyramid 2355 52 26 200 0.82
requests 530 - 4 - ⊥
salt 2605 16 2 49 0.85
scikit-image 331 191 62 5691 0.71
seaborn 990 1 29 0 0.01
setuptools 686 2 4 2 0.39
sunpy 1835 6 13 2 0.21
tornado 1156 - 3 - ⊥
urllib3 1310 - 10 - ⊥
xonsh 1608 102 54 3012 0.93

Overall 69889 1077 548 18154 0.95

the subject set contained victim flaky tests. Finally, Table 7b gives the results
for the Polluter-vs-Rest problem. While the overall MCC is very high at 0.95,
the mean per-project MCC is much lower at 0.46 and the standard deviation
is the greatest of all four problems at 0.34.

Conclusion for RQ1. The overall MCC of the best pipelines for the
four classification problems ranges from 0.95 for Polluter-vs-Rest to 0.52
for Victim-vs-Rest. For NOD-vs-Rest and Victim-vs-Rest, the mean per-
project MCC is close to the overall MCC. The standard deviation of the
per-project MCC ranges from 0.22 to 0.34. These findings suggest that the
performance of machine learning-based flaky test detection is lackluster and
variable between projects, motivating the need for an alternative approach.
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Fig. 5: Plots showing that the relationship between the number of samples to
produce the mean feature vectors (nF ) and the overall detection performance
(MCC) of the best machine learning pipeline is positive but variable in terms
of strength and gradient across the four problems. MCC values are the mean
over 30 repeats. Captions give the coefficients of the red least-squares best-fit
line (MCC = a× nF + b) and the Spearman’s rank correlation coefficient (ρ).

6.2 RQ2. What impact do mean feature vectors have on the performance of
machine learning-based flaky test detection?

Fig. 5 shows the relationship between the sample size to produce the mean
feature vectors (nF ) and the overall detection performance (MCC) of the
best pipeline for each classification problem. Recall from Section 4.2.2 that
CANNIER-Framework encoded test cases with feature vectors that were
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the mean of a random sample (I) of the output from 30 test suite runs in the
Features mode of pytest-CANNIER. Fig. 5a shows the relationship for the
NOD-vs-Rest problem. At 0.86, the Spearman’s rank correlation coefficient
(ρ) indicates that the relationship is positive. However, the gradient (a) of
the line of best fit (in red) is small at just 0.0014. The MCC when nF = 15
on the line of best fit is only 4% greater than the MCC when nF = 1. For
the NOD-vs-Victim problem, Fig. 5b indicates that the relationship is weaker
with a correlation coefficient of 0.71. In this case, the gradient is even smaller
(0.0007), with just a 1% increase in MCC from nF = 15 to nF = 1.

Fig. 5c shows the relationship for Victim-vs-Rest. The correlation coef-
ficient of 1.00 indicates a very strong positive correlation, as is clear from
the plot. The gradient of the line of best fit is comparable to NOD-vs-Rest
(0.0019). In the case of the Polluter-vs-Rest problem, Fig. 5d also shows a
very strong positive relationship between nF and MCC with a corresponding
correlation coefficient of 1. However, the gradient is very small (0.0008).

Conclusion for RQ2. The relationship between the sample size to produce
the mean feature vectors and the overall MCC of the best pipeline is positive
but of variable strength across the four flaky test classification problems. For
all problems, particularly NOD-vs-Victim and Polluter-vs-Rest, the gradient
is small. These results indicate that using mean feature vectors has a small
but positive impact on detection performance.

6.3 RQ3. What contribution do individual features have on the output values
of machine learning models for detecting flaky tests?

Fig. 6 shows the SHAP values for the four flaky test classification problems as
beeswarm plots. In each plot, every feature in Table 1 is represented by a row,
with each value in its corresponding column in the SHAP value matrix plotted
as a colored dot, for which there is one for every test case in the whole subject
set. The horizontal position of each dot represents the SHAP value itself, with
negative SHAP values towards the left and positive SHAP values towards the
right, as indicated by the x-axis labels. Recall from Section 5.2.3 that a positive
SHAP value means the contribution of the feature to the model output value
from the best pipeline for a given test case and problem was positive (increased
it). Conversely, a negative SHAP value means the contribution was negative
(decreased it). In this context, the output value is the predicted probability
of the test case belonging to the positive class of the problem. This means if
a feature contributes positively to the output, it “pushes” the model towards
predicting the positive class, and if it contributes negatively, it pushes towards
the negative class. The color of the dots represent the feature value relative
to the mean feature value, with lower values colored blue and higher values
colored red. For example, a blue dot on the left side of the x-axis indicates a
test case with a relatively low feature value and a positive contribution. The
vertical positions of the dots represent density, such that dots with similar
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Fig. 6: SHAP values for the four flaky test classification problems as beeswarm
plots. These are based on the models from best pipelines for each problem
from RQ1. Blue dots represent lower feature values and red dots represent
higher feature values. Purple dots represent feature values closer to the mean
value. The vertical positions of the dots represent density, such that dots with
similar SHAP values “swarm” around one another. Features are in descending
order of their mean absolute SHAP value, which each beeswarm plot gives in
parentheses. This is a measure of their overall impact on the model’s decision.
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Fig. 7: The relationship between the overall MCC of the best machine learning
pipelines for each flaky test classification problem and the number of top fea-
tures used by CANNIER-Framework to train the model in terms of mean
absolute SHAP value. On the left side of the plot, only the less impactful fea-
tures are removed, which has little effect on detection performance. Towards
the right, the more impactful features are dropped, resulting in a significant
reduction of MCC. MCC values are the mean over 30 repeats of model training
and evaluation.

SHAP values “swarm” around one another. From top-to-bottom, the features
are in descending order of mean absolute SHAP value. In other words, the
features closer to the top have a greater overall impact on the model output.

For the NOD-vs-Rest problem, the contribution of AST Depth, Run Time,
Read Count, Context Switches, Write Count, Wait Time, Max. Children, and
Test Lines of Code appears positive (towards predicting NOD flaky) when
their values are high and negative when their values are low. This is evident
from how the dots on the left side of their rows in Fig. 6a are mostly blue and
those on the right are mostly red. Conversely, the contribution of Assertions
appears negative when high and positive when low, as visualized by mostly
red dots on the left and mostly blue on the right. The contribution of some
features appears more nuanced. For example, when the contribution of Covered
Change is negative its value is mostly high. However, when its contribution is
positive its value is mixed. For the NOD-vs-Victim problem (Fig. 6b), Context
Switches, Run Time, Max. Threads, Read Count, Write Count, Cyclomatic
Complexity, External Modules, Max. Children, and Halstead Volume appear
to contribute positively (towards predicting NOD flaky) when their values are
high and negatively when low. The contribution of the individual features for
this problem appear considerably less well-defined compared to NOD-vs-Rest.
There are some similarities between the results for these two problems, such as
Run Time, Read Count, Context Switches, Write Count, and Max. Children
mostly contributing positively when high and negatively when low.
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As shown by Fig. 6c the contribution of Maintainability, Write Count, Read
Count, and Wait Time features appear broadly positive when their values are
high (towards predicting victim flaky) and negative when low. On the other
hand, Source Covered Lines, Cyclomatic Complexity, and Halstead Volume
show the opposite behavior with moderate consistency. The impact of the
features for this problem differs significantly compared to the NOD-vs-Victim
problem. For example, the Maintainability and Cyclomatic Complexity feature
appears to have nearly the exact opposite contribution pattern. Finally, for the
Polluter-vs-Rest problem (Fig. 6d), Run Time, Assertions, Halstead Volume,
and Wait Time contribute positively when high. Covered Lines, Source Cov-
ered Lines, and Max. Children show the opposite contribution.

Figure 7 shows how the overall MCC of the best pipelines for each problem
decreases as the number of features used by CANNIER-Framework to train
the model are reduced, starting from the least impactful in terms of mean
absolute SHAP value. For example, for the NOD-vs-Rest problem, the MCC
value at 6 on the x-axis corresponds to a model that only considers AST
Depth, Max. Threads, Run Time, Max. Memory, Read Count, and Context
Switches. Initially, the detriment to detection performance is fairly small as
only the least important features are pruned. However, at around 9 features,
the overall MCC begins to plummet quite considerably for every problem.

Conclusion for RQ3. In terms of mean absolute SHAP value, the most
impactful features for the NOD-vs-Rest problem were AST Depth, Max.
Threads, and Run Time; and for the NOD-vs-Victim problem were Context
Switches, Run Time, and Max. Threads. For the Victim-vs-Rest problem,
the most impactful were Max. Memory, Maintainability, and AST Depth;
and for the Polluter-vs-Rest problem were Max. Memory, Max. Threads,
and Run Time. Some features had a clear contribution pattern to the model
and others less so, suggesting potentially more complex relationships.

6.4 RQ4. What impact does CANNIER have on the performance and time
cost of rerunning-based flaky test detection?

Fig. 8 shows the Pareto fronts of overall detection performance and time
cost for the application of CANNIER to the three rerunning-based detec-
tion techniques (see Equations 5, 6, 7, and 8). From right-to-left, the first pin
on each curve is at the point representing the original rerunning-based tech-
nique (where the machine learning model becomes redundant). The second is
at the point representing the balanced application of CANNIER (the knee
point). Tables 8, 9, and 10 give the per-project and overall results at this
point. For CANNIER+Rerun and CANNIER+iDFClass, the third is at
the point representing pure machine learning-based detection (greatest MCC
where ωl = ωu). Above each pin in square brackets is the detection perfor-
mance and time cost associated with the point (its coordinates on the axes).
Below in parentheses are its parameters.
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Fig. 8: The Pareto fronts of detection performance and time cost for the
application of CANNIER to the three rerunning-based detection techniques.
From right-to-left, the first pin on each curve is at the point representing the
original rerunning-based technique. The second is at the point representing the
balanced application of CANNIER. For CANNIER+Rerun (a) and CAN-
NIER+iDFClass (b), the third is at the point representing pure machine
learning-based detection. There is no third pin for CANNIER+Pairwise (c)
because it is not possible to use a pure machine learning-based approach in
this context (see Section 5.2.4). Above each pin in square brackets is the detec-
tion performance and time cost with respect to the whole subject set. Below
in parentheses are the parameters.
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Table 8: The per-project and overall results for CANNIER+Rerun. The ta-
ble gives the confusion matrix categories, rounded to the nearest integer, and
the MCC at the point in the parameter space representing balanced CAN-
NIER+Rerun (ωl = 0.07, ωu = 1.01, nF = 15). It also gives the time cost (in
seconds) at this point (CANNIER+) and at the point representing original
Rerun (Original). The time cost is significantly reduced when using CAN-
NIER. Values are the mean over 30 repeats of model training and evaluation.
Dashes indicate that the value is exactly zero. The “⊥” symbol indicates that
the value is not defined, which was caused by a division by zero when a project
does not have any test cases of certain categories.

Time cost (s)

Project TN FN FP TP MCC CANNIER+ Original

airflow 3185 3 - 63 0.98 7.71× 105 1.69× 106

celery 2332 - - - ⊥ 8.53× 104 3.28× 105

Cirq 12048 - - - ⊥ 2.32× 105 2.17× 106

conan 3687 - - - ⊥ 2.42× 105 3.70× 106

dask 8014 - - 1 1.00 3.01× 105 3.34× 106

django-rest-... 1402 - - - ⊥ 8.85× 104 6.57× 106

electrum 541 1 - - ⊥ 5.12× 104 1.39× 105

Flexget 1329 1 - - ⊥ 7.25× 104 4.32× 106

fonttools 3447 1 - - ⊥ 1.09× 104 2.97× 105

graphene 346 - - - ⊥ 2.55× 103 4.31× 104

hydra 1538 - - - ⊥ 2.34× 104 4.42× 105

hypothesis 4343 4 - 1 ⊥ 1.68× 106 9.57× 106

ipython 801 0 - 6 0.98 5.04× 104 2.63× 105

kombu 1022 1 - 1 ⊥ 1.27× 104 9.05× 104

libcloud 9806 1 - 2 ⊥ 5.00× 103 6.66× 105

loguru 1251 2 - 2 ⊥ 4.73× 104 1.48× 105

mitmproxy 1232 - - - ⊥ 2.11× 103 7.79× 104

Pillow 2567 - - - ⊥ 2.89× 104 2.35× 105

prefect 7010 2 - 23 0.96 4.05× 105 3.80× 106

PyGithub 711 - - - ⊥ 1.41× 104 1.39× 105

pyramid 2633 - - - ⊥ 1.10× 103 1.49× 105

requests 530 0 - 5 1.00 8.48× 104 3.46× 105

salt 2660 1 - 11 0.96 8.75× 104 6.27× 105

scikit-image 6275 - - - ⊥ 5.73× 105 6.36× 106

seaborn 1020 - - - ⊥ 6.41× 104 1.25× 106

setuptools 693 1 - - ⊥ 1.40× 105 4.75× 105

sunpy 1857 - - - ⊥ 3.89× 105 1.08× 106

tornado 1158 1 - - ⊥ 6.44× 103 1.01× 105

urllib3 1305 3 - 12 0.89 3.53× 104 2.13× 105

xonsh 4767 1 - 8 0.94 2.94× 104 4.50× 105

Overall 89510 24 - 134 0.92 5.54× 106 4.91× 107

Fig. 8a and Table 8a give the results for CANNIER+Rerun. As shown
by the figure, the time cost associated with the point representing balanced
CANNIER+Rerun (middle pin) is 89% lower than the time cost associated
with the point representing original Rerun (right pin). At 0.92, the MCC
at the balanced CANNIER+Rerun point is significantly greater than the



38 Owain Parry et al.

Table 9: The per-project and overall results for CANNIER+iDFClass. The
table gives the confusion matrix categories, rounded to the nearest integer, and
the MCC at the point in the parameter space representing balanced CAN-
NIER+iDFClass (ωl = 0.18, ωu = 1.01, nF = 14). It also gives the time
cost (in seconds) at this point (CANNIER+) and at the point representing
original iDFClass (Original). See Table 8 caption for more details.

Time cost (s)

Project TN FN FP TP MCC CANNIER+ Original

airflow 275 3 - 53 0.97 9.22× 106 7.24× 107

celery 15 - - - ⊥ 6.95× 104 2.06× 105

Cirq 17 - - - ⊥ 3.23× 104 4.47× 106

conan 13 - - - ⊥ 2.47× 104 4.84× 105

dask 1 - - - ⊥ 1.87× 104 6.60× 105

django-rest-... 1 - - - ⊥ 1.00× 106 9.66× 105

electrum 1 1 - 0 ⊥ 1.11× 103 3.95× 102

Flexget 4 1 - 0 ⊥ 1.44× 106 1.75× 106

fonttools 42 - - - ⊥ 2.91× 104 2.48× 106

graphene 1 - - - ⊥ 2.42× 102 4.27× 103

hydra 19 - - - ⊥ 2.93× 104 1.31× 106

hypothesis 6 1 - 2 0.85 6.32× 105 9.55× 105

ipython 297 0 - 5 0.99 1.80× 104 7.84× 105

kombu 23 1 - - ⊥ 4.63× 103 1.38× 105

libcloud 133 1 - 2 ⊥ 8.73× 104 8.74× 106

loguru 21 0 - 3 0.98 4.15× 104 2.35× 105

mitmproxy 6 - - - ⊥ 2.61× 103 3.70× 104

Pillow 26 - - - ⊥ 2.55× 103 1.51× 104

prefect 20 - - 17 1.00 7.84× 105 1.04× 106

PyGithub 4 - - - ⊥ 7.82× 102 3.11× 102

pyramid 4 - - - ⊥ 8.37× 102 3.54× 104

requests - - - 4 ⊥ 1.81× 104 1.61× 104

salt 4 - - 12 1.00 1.26× 106 1.33× 106

scikit-image 12 - - - ⊥ 4.89× 105 6.98× 105

seaborn 8 - - - ⊥ 7.64× 104 1.29× 105

setuptools 23 - - 1 1.00 7.53× 104 1.95× 105

sunpy 2 - - - ⊥ 6.20× 103 1.94× 105

tornado 1 - - - ⊥ 6.05× 102 4.03× 101

urllib3 1 0 - 15 0.99 1.25× 104 1.13× 104

xonsh 19 1 - 8 0.95 5.18× 105 5.75× 105

Overall 999 8 - 123 0.97 1.59× 107 9.98× 107

MCC at the point representing pure machine learning-based detection (left
pin), which is 0.55. As shown by the table, the per-project MCC is very con-
sistent. Naturally, the MCC at the original Rerun point is exactly 1, since
the predicted labels are the same as the ground-truth labels in this case (see
Equation 4). Furthermore, the time cost at the pure machine learning point
is significantly lower than the time cost at the other points of interest. This is
because the only time cost associated with this point is that of collecting fea-
ture data. These results demonstrate that applying CANNIER to Rerun can
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Table 10: The per-project and overall results for CANNIER+Pairwise.
The table gives the number of detected victim-polluter pairs (TP), the total
number of such pairs (P), and the true-positive rate (TPR) at the point
in the parameter space representing balanced CANNIER+Pairwise (ωV =
0.06, ωP = 0.09, nF = 9). It also gives the time cost (in seconds) at this point
(CANNIER+) and at the point representing original Pairwise (Original).
See Table 8’s caption for more details about the entities in this table.

Time cost (s)

Project TP P TPR CANNIER+ Original

airflow 45490 45819 0.99 2.60× 106 5.05× 106

celery 7 24 0.31 2.95× 104 6.12× 105

Cirq 30 32 0.94 1.15× 105 2.09× 107

conan - 18 - 2.13× 105 1.09× 107

dask 1 37 0.03 2.39× 105 2.15× 107

django-rest-... 0 3 0.07 4.92× 104 7.37× 106

electrum - 2 - 7.57× 103 6.49× 104

Flexget 2 4 0.43 1.70× 104 4.60× 106

fonttools - - ⊥ 1.93× 104 8.19× 105

graphene - 1 - 3.66× 102 1.19× 104

hydra 839 952 0.88 3.48× 104 5.44× 105

hypothesis 4071 7401 0.55 2.07× 106 3.41× 107

ipython 112497 118869 0.95 1.56× 105 1.78× 105

kombu 44 63 0.70 8.20× 103 7.42× 104

libcloud 984 1686 0.58 1.42× 105 5.23× 106

loguru 3 26 0.13 3.77× 103 1.56× 105

mitmproxy 90 735 0.12 1.13× 104 7.68× 104

Pillow 23 26 0.88 4.57× 104 4.82× 105

prefect 103 230 0.45 5.29× 105 2.19× 107

PyGithub 2703 2712 1.00 1.45× 104 7.89× 104

pyramid 262 383 0.68 4.34× 103 3.15× 105

requests - - ⊥ 6.63× 103 1.50× 105

salt 50 65 0.78 2.96× 104 1.34× 106

scikit-image 5887 5890 1.00 6.30× 106 3.19× 107

seaborn 5 7 0.72 8.31× 104 1.02× 106

setuptools 4 4 1.00 1.76× 104 2.89× 105

sunpy - 9 - 1.48× 105 1.60× 106

tornado - - ⊥ 3.05× 103 9.35× 104

urllib3 - - ⊥ 7.90× 103 2.26× 105

xonsh 9442 9459 1.00 1.15× 105 1.73× 106

Overall 182538 194457 0.94 1.30× 107 1.73× 108

significantly reduce its time cost while maintaining a detection performance
that is far greater than the extra trees model alone.

Fig. 8b and Table 8b show the results for CANNIER+iDFClass. As
shown by the figure, the general picture is similar to CANNIER+Rerun but
somewhat attenuated. The reduction in time cost from original iDFClass to
balanced CANNIER+iDFClass is 84%, slightly less than that for CAN-
NIER+Rerun. In addition, the difference in MCC between the balanced
CANNIER+iDFClass point (0.97) and the pure machine learning point
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(0.71) is slightly less significant. The per-project MCC is broadly consistent,
as shown by the table. The overall implications of these results are the same
as before, namely that applying CANNIER to iDFClass scarifies a minimal
degree of detection performance for a considerable reduction in time cost.

Fig. 8c and Table 8c give the results for CANNIER+Pairwise. Again,
the overall story is similar to the two prior techniques. In this case, the drop
in time cost between original Pairwise and balanced CANNIER+Pairwise
is the greatest at 92%. Furthermore, the true-positive rate (TPR) at the point
representing balanced CANNIER+Pairwise is very high at 0.94. Yet, the
table shows that the per-project detection performance varies significantly, far
more than the previous two techniques. This could be explained by the rela-
tively high variance in the per-project detection performance of the machine
learning pipeline for the Polluter-vs-Rest problem (see Table 7b).

Conclusion for RQ4.When applied toRerun, iDFClass, and Pairwise,
CANNIER is able to reduce time cost by an average of 88% at the expense
of only a minor decrease in detection performance.

7 Discussion

7.1 RQ1. How effective is machine learning-based flaky test detection?

As shown by Table 5, there is not much difference in terms of overall MCC
between consecutive pipelines in the top-12 for each classification problem.
Nonetheless, there are some patterns that have emerged from our choice of
pipeline configurations. For NOD-vs-Rest and Victim-vs-Rest, it appears that
extra trees is the clear winner for the type of model, consistently occupying
the top positions in both tables. Extra trees is a more randomized variant of
random forest, an ensemble model based on decision trees [27,38,62,66]. Both
fit individual trees on a random subset of the features from a random sample of
the data points from the training data. The major difference between the two
models is how nodes in the decision tree are split. Random forest uses an opti-
mal split, whereas extra trees uses a random split. The additional randomness
introduced by extra trees trades increased bias for reduced variance. Increased
bias means the model may fail to recognize relationships between feature data
and labels, known as underfitting. Reduced variance means the model may be
less sensitive to noise and outliers, avoiding overfitting. The fact that extra
trees was more performant with respect to NOD-vs-Rest and Victim-vs-Rest
could suggest that this particular trade-off was more beneficial when tackling
these two problems, compared to NOD-vs-Victim and Polluter-vs-Rest. The
reason for this however would require further investigation.

The pipelines with more trees tended to yield greater detection perfor-
mance than those of the same model type and balancing but with fewer trees.
This is expected, since the motivation behind random forest and extra trees
is to fit decision trees with decoupled prediction errors, such that taking an
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average of their individual predictions leads to some errors cancelling out.
Therefore, it stands to reason that more trees would lead to greater perfor-
mance. Of course, increasing the number of trees can only improve the model
up to a point — and, moreover, there are some instances in our results where
more trees did not lead to better performance.

Plain SMOTE (without additional underbalancing) appeared to yield bet-
ter pipelines compared to SMOTE+ENN and SMOTE+Tomek. Recall from
Section 5.2.1 that SMOTE [31] synthetically increases the number of data
points in the minority class via interpolation. However, the combination of
SMOTE with additional underbalancing techniques produces both synthetic
members of the minority class but also discards some members of the major-
ity class. It could be that the removal of real data points was detrimental to
the performance of the pipelines that used these techniques, though further
investigation would be required to be sure.

Table 6b shows the per-project and overall results of the best pipeline for
the NOD-vs-Victim problem. There is a fairly significant difference between
the overall MCC of 0.69 and the per-project mean MCC of 0.55. Recall that
CANNIER-Framework calculates the overall MCC from the sum of the
per-project confusion matrix category frequencies. This disparity is probably
caused by the individual results for IPython and Airflow having a dis-
proportionate impact on the overall result since they have significantly more
victim flaky tests than the other subject projects (see Table 3). This is also
seen in Table 7b for Polluter-vs-Rest, though in this case the difference be-
tween the mean and overall MCC is much larger. Once again, this is likely due
to the influence of individual projects with relatively many polluters.

The per-project MCC varies quite considerably, with a standard deviation
ranging from 0.22 to 0.34 across the four problems. We would expect that
projects with fewer flaky tests would have a poorer MCC than those with
more, simply because they have fewer positive examples to train the model.
However, our results do not appear to show this trend. Therefore, further
investigation is required to fully understand why the MCC for some projects
is so much greater than that of others.

7.2 RQ2. What impact do mean feature vectors have on the performance of
machine learning-based flaky test detection?

Our conclusion for RQ2, as illustrated by Fig. 5, is that increasing the sample
size to produce the mean feature vectors increases the overall MCC of the best
pipeline for the four flaky test classification problems. This is not surprising,
given how the literature has already established a degree of non-determinism
in some of the dynamic features in Table 1 [43,63,69]. What is more inter-
esting is how weak the effect on MCC appears to be, despite being clearly
positive, as illustrated by the very small gradient of the line of best fit. De-
spite this, at the point representing balanced CANNIER for all three flaky
test detection techniques in RQ4, the number of samples to produce the mean
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feature vectors (nF ) is fairly high (15, 14, and 9 for CANNIER+Rerun,
CANNIER+iDFClass, and CANNIER+Rerun, respectively). This sug-
gests that the added time cost of performing the extra feature measurements
may be a worthwhile trade-off for the increased detection performance.

7.3 RQ3. What contribution do individual features have on the output values
of machine learning models for detecting flaky tests?

Fig. 6 gives the SHAP value beeswarm plots based on the best pipelines for the
four flaky test classification problems. These visualize the contribution of the
18 features in Table 1 towards the output value of the model for a given test
case. It is important to remember that random forest and extra trees are not
causal models and therefore it is not appropriate to infer causality by applying
SHAP without considering confounding [33]. Furthermore, as demonstrated
by our results for RQ1, the detection performance of the models is limited
and therefore the SHAP values may not even offer a reliable insight into the
correlations between the feature values and the probability of a test case being
flaky. Despite this, some of our findings support general intuition and the
consensus of the flaky test literature.

For the NOD-vs-Rest problem, we found that Wait Time appears to con-
tribute positively to the extra trees model output (towards predicting NOD
flaky) when its value is high and negatively when low. This feature measures
the elapsed wall-clock time spent waiting for input/output (I/O) operations
to complete. Many empirical studies have pointed to “asynchronous waiting”
as a leading cause of NOD flaky tests [35,46,50,61], where a test case waits for
an insufficient amount of time for an asynchronous operation, such as I/O, to
complete. We also found Context Switches and Max. Children to have a similar
contribution pattern. Both of these features are associated with concurrency,
another leading cause of flakiness as attested by the same studies. Further-
more, Read Count and Write Count, that measure the number of times the
filesystem performed input and output respectively, also appear to contribute
positively to the model output when high and negatively when low. Previous
work has identified I/O itself as a cause of flaky tests [50], but this behavior
could also be related to asynchronous waiting, since Wait Time is time spent
waiting for I/O and could correlated with Read Count and Write Count.

For NOD-vs-Rest and NOD-vs-Victim, Run Time has a positive contri-
bution when high and a negative contribution when low and ranks highly in
terms of overall contribution (i.e., the mean absolute SHAP value). In their
evaluation of FlakeFlagger, Alshammari et al. [22] also found the execution
time of test cases to be correlated with the probability of being NOD flaky.
However, they were unable to establish any casual link. For the Victim-vs-Rest
problem, Write Count, Read Count, and Wait Time seem to contribute have a
similar contribution pattern, but to varying degrees of consistency. Since these
features are associated with I/O, this correlation could be explained by the
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def test_create_pool(self):

pool = self.client.create_pool(name='foo', slots=1, description='')

self.assertEqual(pool, ('foo', 1, ''))

self.assertEqual(self.session.query(models.Pool).count(), 2)

(a) This test case from the Airflow project [2] has an AST depth of 1.

def test_top_level_return_error(self):

tl_err_test_cases = self._get_top_level_cases()

tl_err_test_cases.extend(self._get_ry_syntax_errors())

vals = ('return', 'yield', 'yield from (_ for _ in range(3))',

dedent('''

def f():

pass

return

'''),

)

for test_name, test_case in tl_err_test_cases:

# This example should work if 'pass' is used as the value

with self.subTest((test_name, 'pass')):

iprc(test_case.format(val='pass'))

# It should fail with all the values

for val in vals:

with self.subTest((test_name, val)):

msg = "Syntax error not raised for %s, %s" % (test_name, val)

with self.assertRaises(SyntaxError, msg=msg):

iprc(test_case.format(val=val))

(b) This test case from the IPython project [10] has an AST depth of 5.

Fig. 9: Two test cases with different values for the AST depth feature. This
feature measures the maximum depth of nested program statements.

relationship between filesystem activity and victim flaky tests established in
previous studies (e.g., [23,26,36,50,76]).

Seven of the 18 features are static, meaning they are based on the test case
code and do not require a test case execution to measure. One of these is AST
Depth that measures the maximum depth of nested program statements. Fig.
9 compares two test cases with different values for the AST depth feature. In
terms of mean absolute SHAP value, AST Depth was the most impactful for
the NOD-vs-Rest problem. While no previous study has examined the rela-
tionship between AST Depth and flakiness, intuitively we might expect a high
AST Depth to be associated with a higher chance of flakiness. This is simply
because a test case with a higher AST Depth is likely to be more complex and
therefore offer more opportunities for flakiness to arise. The beeswarm plot for
NOD-vs-Rest appear to broadly support this notion yet the plots for the other
problems do not indicate a clear relationship. This suggests that AST Depth
may be correlated with the probability of a test case being NOD flaky.
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There appear to be some tentative relationships between the contribution
patterns of features for the four problems. For NOD-vs-Rest and NOD-vs-
Victim, the contribution of Run Time, Read Count, Context Switches, Write
Count, and Max. Children are broadly positive when high and negative when
low. This could be due to the positive class being the same for both problems
and the negative class of NOD-vs-Victim being a subset of the negative class of
NOD-vs-Rest. Moreover, the contribution pattern of the features for the NOD-
vs-Victim differs significantly that of the Victim-vs-Rest problem. As we saw
in Section 6.3, the Maintainability and Cyclomatic Complexity features appear
to have nearly opposite contribution patterns between the two problems. This
is expected, because the positive class of Victim-vs-Rest is the negative of
NOD-vs-Victim, and the negative class of Victim-vs-Rest is a superset of the
positive of NOD-vs-Victim.

It is clear from Figure 7 that dropping the less impactful features (in terms
of mean absolute SHAP value) has little impact on the detection performance
of the best pipeline for each problem. Since the time to fit a random for-
est/extra trees model grows linearly with the number of features, this is a
useful result for expediting the training stage. This is not directly relevant
to the conclusions of this paper’s study however, as we are not concerned
with the time cost of model training since that is performed off-line from the
perspective of a developer using the CANNIER approach.

7.4 RQ4. What impact does CANNIER have on the performance and time
cost of rerunning-based flaky test detection?

We presented CANNIER+iDFClass as a drop-in replacement for the Clas-
sification stage of iDFlakies. In theory, the combination of the NOD-vs-Rest
and Victim-vs-Rest models could be a substitute for the entire iDFlakies
pipeline. This could be realized as CANNIER+iDFlakies, a multi-model
approach with a multi-label output: NOD, Victim, or Rest (non-flaky). In
practice, the difficulty arises when either of the models are ambiguous for a
given test case. To delegate the prediction for such a test case to iDFlakies
in this hypothetical scenario, CANNIER+iDFlakies would need to rerun
the entire test suite in different orders until the test case fails or the upper-
limit is reached. This corresponds to the Running stage of iDFlakies. As
with the single-model CANNIER+iDFClass given in the paper, it would
then execute the prefix of the failing test order, representing the Classification
stage of iDFlakies. Naturally, with even a handful of ambiguous cases, the
hypothetical multi-model CANNIER+iDFlakies would be unlikely to no-
ticeably reduce the time cost of the Running stage, but would reduce the time
cost of the Classification stage in the same way as the existing single-model
CANNIER+iDFClass. Therefore, the benefit of CANNIER+iDFlakies
is effectively the same as CANNIER+iDFClass, since the latter makes no
attempt to expedite the Running stage. For these reasons, we opted to focus
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on CANNIER+iDFClass due to its simplicity and the fact that it would
require fewer modifications to iDFlakies to implement.

As shown in Fig. 8a and Table 8, for the point representing balanced CAN-
NIER+Rerun, the lower-threshold (ωl) is very low at 0.07 and the upper-
threshold (ωu) is at its maximum value of 1.01. The latter means that there
effectively is no upper-threshold on the predicted probability (see the second
clause of Equation 4). Fig. 10 illustrates the distribution of predicted proba-
bilities for test cases in, and gives the frequencies of, each confusion matrix
category, for each of the four flaky test classification problems. We produced
this figure from the results of RQ1, such that the figure for each classification
problem corresponds to its respective table in Tables 6 and 7. Fig. 10a fo-
cuses on the NOD-vs-Rest problem. The distribution for true-negatives (TN)
is focused largely around 0 and represents the vast majority of test cases. Fur-
thermore, the distribution for false-negatives (FN) appears highly separable
from true-negatives. This might explain why ωl is so low, because it means
CANNIER+Rerun labels most true-negative test cases as negative and pre-
vents them from being delegated to Rerun, significantly reducing time cost.
It also means CANNIER+Rerun labels only a handful of false-negatives as
negative, limiting the reduction in detection performance. The distribution
for true-positives (TP) is clearly different from false-positives (FP) but not
as easily separable. However, there are few test cases in both categories rela-
tive to true-negatives. Therefore, by setting ωu to its maximum value, CAN-
NIER+Rerun makes no false-positive predictions, ensuring no decrease in
detection performance at the expense of a minor increase in time cost. This
could explain why there are no false-positive predictions in Table 8.

Fig. 10b illustrates the distribution of predicted probabilities for NOD-
vs-Victim. The situation for this problem and the thresholds for the point
representing balanced CANNIER+iDFClass is very similar to NOD-vs-Rest
and CANNIER+Rerun. The biggest difference is that the frequency of the
true-negative category for NOD-vs-Victim is two orders of magnitude smaller
than that for NOD-vs-Rest. The distribution for true-negatives also spreads
much further into the distribution for false-negatives. This may explain why
the lower-threshold for CANNIER+iDFClass is greater at 0.18 and why the
reduction in time cost from iDFClass to CANNIER+iDFClass is smaller.

Fig. 10c and 10d are for Victim-vs-Rest and Polluter-vs-Rest respectively.
Once again, the overall picture is similar for both problems. That is, the true-
negative category contains the vast majority of test cases and its distribution
is broadly separable from the false-negative category. This explains why the
victim-threshold (ωV ) and polluter-threshold (ωP ) for the balanced CAN-
NIER+Pairwise point are low at 0.06 and 0.08 respectively. Uniquely for
Polluter-vs-Rest, the true-positive distribution appears very distinct from the
false-positive distribution. Perhaps because this problem has significantly more
positive examples in the dataset compared to the other problems, the machine
learning model can discern unseen positive cases with greater confidence.



46 Owain Parry et al.

0 0.5 1

TN (89460)

FN (83)

FP (50)

TP (75)

Predicted probability

(a) NOD-vs-Rest

0 0.5 1

TN (957)

FN (32)

FP (42)

TP (99)

Predicted probability

(b) NOD-vs-Victim

0 0.5 1

TN (88292)

FN (529)

FP (361)

TP (486)

Predicted probability

(c) Victim-vs-Rest

0 0.5 1

TN (69889)

FN (1077)

FP (548)

TP (18154)

Predicted probability

(d) Polluter-vs-Rest

Fig. 10: The distribution of predicted probabilities for test cases in, and the
frequencies of, each confusion matrix category, for each of the four flaky test
classification problems. The data is based on the best pipelines from RQ1.
Whiskers represent the range from the 5th to the 95th percentile and boxes
represent the 25th to the 75th. Middle lines represent the median (50th).

7.5 Implications

7.5.1 Researchers

Our findings for RQ1 extend the existing body of work in machine learning-
based flaky test detection into the detection of polluter test cases. Identifying
polluters is vital for mitigating test-order dependencies [48,53,65] and so our
results demonstrate the wider applicability of machine learning models for
tackling flaky tests. Our results for RQ2 (and supported by RQ4) demon-
strate that using mean feature vectors can improve the detection performance
of machine learning models. We therefore suggest that researchers consider the
implications of this when evaluating machine-learning based techniques that
use dynamic features. Our results for RQ3 tentatively identify correlations be-
tween test case metrics and the probability of a test case being flaky. This
is an important foundation for future work in elevating flaky test detection
techniques to comprehensive flaky test root causing techniques, a vital inter-
mediate step towards automated flaky test repair. While such root causing and
repair techniques exist [45,67,70], they are expensive and limited in scope.
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7.5.2 Developers

Our findings for RQ4 demonstrate that CANNIER is a “best of both worlds”
approach between rerunning-based and machine learning-based flaky test de-
tection. As shown by Figure 8, CANNIER reduces time cost by an average
of 88% across the three rerunning-based techniques while maintaining good
detection performance. For developers, this means not having to trade high
time cost for limited detection performance. Furthermore, while we used the
knee-point of the Pareto front to represent CANNIER in our evaluation,
developers could customize the approach towards lower time cost or greater
detection performance by selecting a different point.

8 Related Work

Luo et al. [50] performed one of the earliest empirical studies of test flakiness.
Using 51 projects of the Apache Software Foundation as subjects, they clas-
sified 201 commits that repaired flaky tests into 10 categories based on the
cause of the flakiness. The most common cause they identified was related to
waiting for asynchronous operations. For example, a test case that launches a
thread to perform input/output (I/O) and waits a fixed amount of time for it
to finish may fail when it takes longer than expected. One of our findings for
RQ3 was that the amount of time spent waiting for I/O operations to complete
was positively correlated with the probability of a test case being NOD flaky.

Gruber et al. [40] repeatedly executed the test suites of 22,352 open-source
projects and automatically identified 7,571 flaky tests. Like our study, these
projects were primarily written in the Python programming language. They
randomly sampled 100 NOD flaky tests in their dataset to classify their causes
using the categories introduced by Luo et al. [50]. Unlike Luo et al., they found
causes related to networking and randomness to be the most prevalent.

Bell et al. [24] presented an automated technique, called DeFlaker, for
detecting NOD flaky tests. The key advantage of DeFlaker over Rerun is
that it does not require repeated test case executions. Instead, the technique
takes advantage of a project’s history in a version control system. When a
test case that passed on a previous version of the software now fails, and does
not cover modified code, DeFlaker labels it as flaky. Naturally, DeFlaker
requires a test suite run with code instrumentation to measure coverage. De-
tecting flaky tests using extra trees models with CANNIER-Framework
also requires an instrumented run to measure coverage and the other metrics
in Table 1. In both cases, this test suite run introduces time overhead. However,
DeFlaker requires a run every time a change is made, whereas CANNIER-
Framework requires at least one to produce encodings for each test case that
would likely remain relevant over a series of changes. Furthermore, DeFlaker
can only detect flaky tests after they fail. In contrast, the models trained by
the CANNIER-Framework can detect flaky tests preemptively.
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Pinto et al. [58] and Bertolino et al. [25] both presented machine learning-
based flaky test detection techniques based purely on static features of the test
case code. Both techniques encoded test cases using a bag-of-words approach.
This represents test cases as sparse vectors where each element corresponds to
the frequency of a particular identifier or keyword in its source code. Pinto et al.
used additional static features such as the number of lines of code. Bertolino
et al. used a k-nearest neighbor classifier [44] for the machine learning model
and Pinto et al. evaluated a range of different models, including random forest.
They found random forest to yield the best detection performance, of which
we use the extra trees variant in this paper’s study, having found it to be the
most effective in our prior work [55]. Alshammari et al. [22] presented Flake-
Flagger, a detection technique using a random forest model and encoding
test cases with a feature set containing a mixture of static and dynamic test
case metrics. Their evaluation showed that their feature set offered a 347% im-
provement in overall F1 score compared to Pinto et al.’s purely static feature
set at the cost of a single instrumented test suite run to measure the dynamic
features. For this reason, we included both static and dynamic test metrics in
our feature set instead of relying on purely static features.

Shi et al. [65] presented iFixFlakies, a technique for automatically gener-
ating patches for victim flaky tests. Their approach uses delta-debugging [74]
to identify a victim’s polluters and other test cases that may contain the state-
ments needed to repair the victim, known as cleaners. CANNIER+Pairwise
could provide a drop-in replacement for this aspect of iFixFlakies. How-
ever, we cannot say for certain if our approach would be faster than using
delta-debugging because we have not yet evaluated it in this context.

Lam et al. [47] presented iDFlakies, a technique for detecting flaky tests
and classifying them as either NOD or Victim. The overall process involves
repeatedly executing a test suite in a modified order (e.g., shuffled) to identify
flaky test cases. Following this, the tool enters a Classification stage where it
attempts to determine the category of each flaky test. In this paper’s study, we
evaluated the application of CANNIER to the Classification stage of this tool
(CANNIER+iDFClass). Our empirical results demonstrated that CAN-
NIER was able to significantly reduce the execution time overhead of the
Classification stage at minimal detriment to its detection performance.

9 Conclusion and Future Work

This paper expanded the existing work on machine learning-based flaky test
detection and introduced CANNIER, an approach for significantly reducing
the time cost of rerunning-based detection techniques by combining them with
machine learning models. Initially, using a variety of machine learning pipelines
and a feature set of 18 static and dynamic test case metrics, we performed
a baseline evaluation of machine learning-based detection on our dataset of
89,668 test cases from 30 Python projects. We evaluated their performance
with respect to detecting NOD flaky tests, victim flaky tests, and polluter



Evaluating Flaky Test Detection Combining Rerunning and ML Models 49

test cases. Our results suggested that the performance of the machine learning
models was lackluster and variable between projects. We then went on to
investigate the impact of mean feature vectors on machine learning-based flaky
test detection. We identified a positive relationship between the sample size
to produce the mean feature vectors and the detection performance of the
machine learning model. In the interest of model explainability, we applied the
SHAP technique [49] to quantify the contribution of each individual feature to
the output value of the model. While this technique can only reveal correlations
and is not appropriate for inferring causality, we made several findings that
support both the general intuition of developers and results from the flaky test
literature. Finally, we evaluatedCANNIER’s impact on three rerunning-based
methods for flaky test detectionRerun, the Classification stage of iDFlakies,
and Pairwise. We found thatCANNIER was able to significantly reduce time
cost at the expense of only a minor decrease in detection performance.

As future work, we intend to further investigate the features associated
with test flakiness. In doing so, we will consider applying causal inference
techniques [72] for a deeper understanding into the processes that lead to
test flakiness. We will also consider evaluating the performance of machine-
learning-based detection with respect to more specific categories of flaky tests,
such as “implementation-dependent” flaky tests [64,75]. Finally, we plan to
evaluate the efficiency and effectiveness of integrating CANNIER into a wider
range of existing flaky test techniques, such as iFixFlakies [65].

10 Data Availability Statement

The datasets generated during and/or analyzed during this paper’s study are
available in the CANNIER-Experiment repository, https://github.com
/flake-it/cannier-experiment.

11 Declarations

The research leading to these results received funding from the Engineer-
ing and Physical Sciences Research Council (EPSRC) (Award Number:
EP/R513313/1).

References

1. (2022)
2. airflow/test local client.py at c743b95a02ba1ec04013635a56ad042ce98823d2, https://

github.com/apache/airflow/blob/c743b95a02ba1ec04013635a56ad042ce98823d2/te

sts/api/client/test_local_client.py#L127 (2022)
3. apache/airflow at c743b95a02ba1ec04013635a56ad042ce98823d2 https://github.com

/apache/airflow/tree/c743b95a02ba1ec04013635a56ad042ce98823d2 (2022)
4. CANNIER experiment, https://github.com/flake-it/cannier-experiment (2022)
5. CANNIER framework, https://github.com/flake-it/cannier-framework (2022)



50 Owain Parry et al.

6. Coverage.py — Coverage.py 6.4.1 documentation, https://coverage.readthedocs.i
o/en/stable/ (2022)

7. Docker documentation, https://docs.docker.com/ (2022)
8. Glossary — Python 3.10.4 documenation, https://docs.python.org/3/glossary.htm

l\#term-global-interpreter-lock (2022)
9. I/O statistics fields, https://www.kernel.org/doc/Documentation/iostats.txt (2022)

10. ipython/test async helpers.py at 95d2b79a2bd889da7a29e7c3cf5f49c1d25ff43d, https:
//github.com/ipython/ipython/blob/95d2b79a2bd889da7a29e7c3cf5f49c1d25ff43d

/IPython/core/tests/test_async_helpers.py#L135 (2022)
11. New EC2 M5zn instances — Fastest Intel Xeon scalable CPU in the cloud — AWS

news blog https://aws.amazon.com/blogs/aws/new-ec2-m5zn-instances-fastest-i

ntel-xeon-scalable-cpu-in-the-cloud/ (2022)
12. Open source project criticality score (beta), https://github.com/ossf/criticality_

score (2022)
13. Psutil documentation — Psutil 5.7.3 documenation, https://psutil.readthedocs.i

o/en/stable/ (2022)
14. pytest-CANNIER, https://github.com/flake-it/pytest-cannier (2022)
15. Pytest: Helps you write better programs — Pytest documentation, https://docs.pyt

est.org/en/7.1.x/ (2022)
16. Scikit-learn: Machine learning in Python — Scikit-learn 1.1.1 documenation, https:

//scikit-learn.org/stable/ (2022)
17. Unittest — Unit testing framework — Python 3.10.4 documenation, https://docs.p

ython.org/3/library/unittest.html (2022)
18. Virtual environments and packages — Python 3.10.4 documenation, https://docs.pyt

hon.org/3/tutorial/venv.html (2022)
19. Welcome to radon’s documenation! — Radon 4.1.0 documenation https://radon.read

thedocs.io/en/stable/index.html (2022)
20. Welcome to the SHAP documenation! — SHAP latest documenation https://shap.r

eadthedocs.io/en/stable/index.html (2022)
21. Al-Qutaish, R., Abran, A.: Halstead Metrics: Analysis of their Design, pp. 145–159.

Wiley (2010)
22. Alshammari, A., Morris, C., Hilton, M., Bell, J.: FlakeFlagger: Predicting flakiness

without rerunning tests. In: Proceedings of the International Conference on Software
Engineering (ICSE) (2021)

23. Bell, J., Kaiser, G., Melski, E., Dattatreya, M.: Efficient dependency detection for safe
Java test acceleration. In: Proceedings of the Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp. 770–781 (2015)

24. Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., Marinov, D.: DeFlaker: Au-
tomatically detecting flaky tests. In: Proceedings of the International Conference on
Software Engineering (ICSE), pp. 433–444 (2018)

25. Bertolino, A., Cruciani, E., Miranda, B., Verdecchia, R.: Know your neighbor: Fast
static prediction of test flakiness. IEEE Access 9, 76119–76134 (2021)

26. Biagiola, M., Stocco, A., Mesbah, A., Ricca, F., Tonella, P.: Web test dependency detec-
tion. In: Proceedings of the Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE), pp. 154–164
(2019)

27. Breiman, L.: Random forests. Machine Learning 45(1), 5–32 (2001)
28. Camara, B., Silva, M., Endo, A., S., V.: On the use of test smells for prediction of

flaky tests. In: Proceedings of the Brazilian Symposium on Systematic and Automated
Software Testing (SAST), pp. 46–54 (2021)

29. Camara, B., Silva, M., Endo, A., S., V.: What is the vocabulary of flaky tests? An ex-
tended replication. In: Proceedings of the International Conference on Program Com-
prehension (ICPC), pp. 444–454 (2021)

30. Candido, J., Melo, L., D’Amorim, M.: Test suite parallelization in open-source projects:
A study on its usage and impact. In: Proceedings of the International Conference on
Automated Software Engineering (ASE), pp. 153–158 (2017)



Evaluating Flaky Test Detection Combining Rerunning and ML Models 51

31. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: Synthetic mi-
nority over-sampling technique. Journal of Artificial Intelligence Research 16, 321–357
(2002)

32. Chicco D. Jurman, G.: The advantages of the matthews correlation coefficient (mcc)
over f1 score and accuracy in binary classification evaluation. BMC Genomics 21(6),
1471–2164 (2020)

33. Dillon, E., LaRiviere, J., Lundberg, S., Roth, J., Syrgkanis, V.: Be careful when inter-
preting predictive models in search of causal insights, https://shap.readthedocs.io/
en/latest/example_notebooks/overviews/Be%20careful%20when%20interpreting%2

0predictive%20models%20in%20search%20of%20causal%C2%A0insights.html (2018)
34. Durieux, T., Goues, C.L., Hilton, M., Abreu, R.: Empirical study of restarted and flaky

builds on Travis CI. In: Proceedings of the International Conference on Mining Software
Repositories (MSR), pp. 254–264 (2020)

35. Eck, M., Palomba, F., Castelluccio, M., Bacchelli, A.: Understanding flaky tests: The
developer’s perspective. In: Proceedings of the Joint Meeting of the European Software
Engineering Conference and the Symposium on the Foundations of Software Engineering
(ESEC/FSE), pp. 830–840 (2019)

36. Gambi, A., Bell, J., Zeller, A.: Practical test dependency detection. In: Proceedings of
the International Conference on Software Testing, Verification and Validation (ICST),
pp. 1–11 (2018)
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