
An Empirical Comparison of Methods for Compressing Test Coverage Reports

Erik Ostrofsky and Gregory M. Kapfhammer
Allegheny College

Department of Computer Science
{ostrofe, gkapfham}@allegheny.edu

Introduction . Test coverage monitoring techniques are
an integral part of modern methodologies for testing com-
puter software. For instance, tools such as automated fault
localizers [2], test adequacy calculators [3], and debuggers
[4] all use a coverage report for various purposes. Re-
cently developed monitoring methods track the coverage
of the nodes and edges in a program’s control flow graph,
definition-use associations involving program variables [8],
or interaction with the state and structure of a database [3].
However, a coverage report often balloons in size as the
monitor includes additional details about the behavior of the
program, test suite, and other software components such as
the operating system and database. The marked increase in
coverage report size is particularly problematic when test-
ing occurs in a resource constrained embedded environment
[1] or on a build/test server that collects coverage results for
many programs over a long time period [7]. Large cover-
age reports may also limit the efficiency and effectiveness
of defect isolation methods that monitor a remote program
and thus transmit coverage data across a network [5].

Empirical Study . As shown in Figure 1, the monitoring
process normally involves the following steps: (1) instru-
menting the program and test suite in order to collect cov-
erage information, (2) executing the test suite so that a cov-
erage report may be constructed, and (3) compressing and
storing the coverage results for later analysis. This poster
studies the impact that coverage report format and the use
of compression has on the third phase of monitoring. Since
prior work finds that coverage reports in the form of either
a dynamic call tree (DCT) or a calling context tree (CCT)
support effective test suite reduction [3, 6], this poster picks
this tree-based format as the basis for an empirical com-
parison of compression methods. In particular, we exper-
imentally evaluate the trade-offs associated with encoding
the coverage report in either a binary or eXtensible markup
language (XML) file and further consider the merits of us-
ing either a traditional or XML-aware file compressor. Us-
ing six case study applications that vary in their size (548
to 1455 non-commented source statements and 13 to 51 test
cases) [3], this poster reports on measurements of the time
overhead associated with storing the report, size of both the
compressed and uncompressed coverage results, and time
required to run the compressor and decompressor.

Using graphs and tables like those in Figure 2, this poster
enables both researchers and practitioners to identify the
fundamental trade-offs associated with compressing cover-
age data. For instance, the experiments reveal that the re-
ports encoded in XML take longer to store and are larger

Program

1 - Instrumentation

Test Suite

Adequacy 
 Criterion Instrumented 

 Program

2 - Test Coverage 
 Monitoring

Instrumented 
 Test Suite

Coverage 
 Report

3 - Compression 
 and Storage

Figure 1. Test Coverage Monitoring Process.

Report Format Time (ms)
CCT Binary 144.9
DCT Binary 1011.72
CCT XML 408.17
DCT XML 2569.22

Format Original Size (kb)
Binary 39.1
XML 283

Format Compressor Size (kb)
Binary Gzip 3.59
Binary Zip 3.94
XML Gzip 6.73
XML Zip 7.09
XML XMill 2.36

Figure 2. Report Overheads Across All Applications.

than the comparable binary file. Yet, an XML-aware com-
pressor called XMill exploits the meta-data embedded in
this text-based format in order to create a coverage file that
is smaller than the compressed binary version.

References
[1] S. Bhadra, A. Conrad, C. Hurkes, B. Kirklin, and G. M. Kapfhammer. An empiri-

cal study of methods for executing test suites in memory constrained environments.
In Proc. of 4th AST, 2009.

[2] J. A. Jones and M. J. Harrold. Empirical evaluation of the tarantula automatic
fault-localization technique. InProc. of 20th ASE, 2005.

[3] G. M. Kapfhammer and M. L. Soffa. Database-aware test coverage monitoring.
In Proc. of the 1st ISEC, 2008.

[4] A. J. Ko and B. A. Myers. Debugging reinvented: asking and answering why
and why not questions about program behavior. InProc. of 30th ICSE, 2008.

[5] B. Liblit, A. Aiken, A. X. Zheng, and M. I. Jordan. Bug isolation via remote
program sampling. InProc. of PLDI, 2003.

[6] S. McMaster and A. M. Memon. Call stack coverage for test suite reduction. In
Proc. 21st ICSM, 2005.

[7] A. M. Memon, I. Banerjee, and A. Nagarajan. DART: A framework for regres-
sion testing nightly/daily builds of GUI applications. InProc. of 19th ICSM, 2003.

[8] J. Misurda, J. A. Clause, J. L. Reed, B. R. Childers, and M. L. Soffa. Demand-
driven structural testing with dynamic instrumentation. InProc. of 27th ICSE,
2005.


