
Beyond Test Flakiness: A Manifesto for a
Holistic Approach to Test Suite Health
Phil McMinn

University of Sheffield, UK
Muhammad Firhard Roslan

University of Sheffield, UK
Gregory M. Kapfhammer

Allegheny College, USA

Abstract—Large numbers of flaky tests are a sure sign of a
dysfunctional, or “unhealthy”, test suite. In this paper, we identify
several further indicators of unhealthy test suites, arguing that
trade-offs exist among some indicators, with others complement-
ing one another. We encourage researchers and practitioners not
to stop at test flakiness—or any individual metric of “good”
or “bad” tests—and instead focus on developing and adopting
techniques and tools that holistically address test suite health. For
more information, see https://philmcminn.com/test-suite-health.

I INTRODUCTION & MOTIVATION

Since flaky tests [7] may fail when a program is actually
working or pass when it is not, developers cannot trust them to
accurately assess their software. This paper argues that flaky
tests are just one of a series of indicators of an “unhealthy”
test suite—a test suite that is not fit for the purpose of giving
developers timely feedback about the correctness of the soft-
ware they are developing, either at the present time or in the
future. It contends that considering flakiness in combination
with other test suite health indicators is advantageous for
determining what is a truly useful, functioning test suite.
These indicators can be organized into a checklist, with the
aim of minimizing or maximizing the presence and impact
of each one. Critically, we argue that, while some indicators
are complementary, trade-offs exist among others, suggesting
that it is not appropriate to optimize for each one separately
from the others. This paper therefore encourages researchers
to look “beyond” test flakiness, and, in particular, the isolated
consideration of it and other indicators of test health. Instead,
it suggests that test suite health is a big-picture issue that
must be holistically tackled to encourage practitioners to write
“good” test suites that are fit for their purpose, supported by
researchers who design and experimentally evaluate automated
techniques and tools to assist them in effectively doing so.

II INDICATORS OF UNHEALTHY TEST SUITES

Unhealthy test suites have several tell-tale signs. In this
section, we identify a list of nine test suite health indicators,
the first being I0: Flakiness. We discuss further indicators
starting with those that are the most well-understood and
measurable, to those that are less so and more diffuse. We do
not claim our list to be exhaustive, but rather as a starting point
for researchers, and to promote discussion at the workshop.
I1: Low Code Coverage. A test suite with low code coverage
does not execute regions of the program under test and is thus
the first and most obvious indicator of poor test suite health.
While high coverage does not indicate good test suite health
either, as we will later argue, low coverage tests will not be
able to reveal many defects or give developers useful feedback.

I2: High Pseudo-Testedness. Pseudo-tested program elements
(e.g., statements or methods) are executed by tests, but can be
removed from the program without any impact on the pass/fail
behavior of the tests [6], [11]. High levels of pseudo-testedness
reveal poor test suite health in the form of a lack of assertions.
Perhaps paradoxically, a test suite with high levels of pseudo-
testedness is likely to be less prone to flakiness (I0)—due
to fewer checks, and brittleness (I6)—due to less stringent
assertions, suggesting a trade-off between health indicators.

I3: Low Mutation Score. A low mutation score indicates a
test suite that is not very sensitive to faults, and is therefore
also an indicator of poor test suite health [6]. If there is high
pseudo-testedness then the mutation score will be low, since
if code can be removed without the test suite “noticing”, it is
unlikely that seeded faults will be detected either. Yet, tests
with a high mutation score may be more brittle (I6) if they
are “change detectors” that myopically focus on the program’s
current implementation rather than its intended specification.

I4: Long-Running Test Suites. If a test suite is not fast to
execute, it will not provide quick feedback to developers who
thus may be dissuaded from using it as frequently as they
should. While there are techniques to reduce test suites and
prioritize important tests, developers must be careful not to use
them as a “sticking plaster” that deceptively masks problems
and/or significant bottlenecks in the test suite’s execution. This
may, for example, require a slow-running component to be
mocked to improve test speed. However, testers need to be
careful this does not reduce realism (I7) or potentially increase
either the flakiness (I0) or brittleness (I6) of their test suite.

I5: Low Diversity of Tests. Test diversity can be measured in
a variety of ways, for example, based on execution traces [12],
or the actual text of test cases [5]. Regardless, low test diversity
likely indicates that tests are executing similar program paths,
which may increase pseudo-testedness (I2) and decrease mu-
tation scores (I3). It may also contribute to a high level of
brittleness in tests (I6), since if the interfaces to frequently-
called methods change, then a large number of tests will also
need to be changed. This can also arise when developers copy
and paste from prior test cases when they create new ones [1].

I6: High Brittleness. Large numbers of tests that break due to
production code changes suggest that tests are highly coupled
to implementation details [4], another signal of an unhealthy
test suite. This is one way in which the pursuit of either
high coverage (I1) or mutation scores (I3) can be detrimental
since, whenever possible, tests should focus on behaviors of
the program under test, not how they have been implemented.



I7: Low “Realism”. Tests that do not mimic the way an API,
library, or component is used in production may suffer from a
lack of realism. This means that the tests may be exercising the
program differently than real-world users, potentially leading
to false outcomes. Such tests may also contribute to brittleness
(I6) and require excessive maintenance when the code under
test changes. Tests may become unrealistic when they rely too
heavily on mocks to simulate parts of a system [4] or test via
non-public methods rather than through a public interface [8].
I8: High Variability of Indicators. Variability of indicator
metrics is itself an indicator of an unstable and hence po-
tentially unhealthy test suite. Hilton et al. [3] observed that
test suites often differ in their coverage levels from run to
run. Flakiness (I0) itself is a variation in test outcomes. Other
indicators such as wildly differing execution times or mutation
scores would appear to be signs of undependability, and hence
variation of key metrics is potentially an important but largely
unexplored area of research in the context of test suite health.

III TEST SUITE HEALTH: A RESEARCH AGENDA

Having identified some indicators of test suite health, the
question is what to do about them to help practitioners
maintain healthier test suites in future development practice.
This requires more research. As part of such a research agenda,
we contend that several pressing challenges must be addressed:
C1: Further Indicators. The previous section is a list of what
we believe to be a good initial starting point for analyzing test
suite health. However, there may be further useful indicators
that could be added to our checklist, while others may turn out
to be less useful than initially thought and could be removed.
C2: Synergies & Trade-offs. We have outlined some syn-
ergies and trade-offs between each of the indicators. More
are likely to exist, and identifying these will be important
for techniques that attempt to measure and/or optimize for
overall test suite health. Where there are trade-offs, we need
to establish how much a decrease in one metric is tolerable for
an increase in another. Following this, is there a Pareto-front
of potentially acceptable options, and if so, is there any advice
we can give as to which should be preferred by the tester?
C3: Measurability. While several indicators, such as coverage
(I1) and mutation score (I3), are established metrics, others,
like realism (I7), lack obvious means of quantification. Fur-
thermore, test brittleness (I6) is, in its various forms, a serious
and costly problem in development practice, but has received
relatively little attention in the literature compared to flakiness.
C4: Metrifying Test Suite Health & C5: Making Actionable
Recommendations and Fixes. Once we have established
which indicators are practically useful, and how they can all
be measured, the question then is how to use them all in
combination to build a holistic picture of test suite health?
While putting a number to it may be useful in some contexts,
it is unlikely to be helpful to developers seeking concrete
actions on how to go about improving the health of their tests.
Future research needs to address this, and link measurements
to actionable tasks that a developer might want to perform.

C6: Tooling. There already exist several tools for some of
the individual indicators (e.g., coverage and mutation score)
and they may help with both of the two previous challenges.
However, for others, tooling and more research is required.
C7: How Does Test Suite Health Change? Finally, it would
be interesting to study how test suite health changes over the
lifecycle of a project. Is it something that gradually deteriorates
over time, creating a technical debt in the same way that
all code tends to require maintenance and refactoring? Are
differing checks and interventions needed at different maturity
stages of a project, and are there points in the project’s life-
cycle where some indicators are more important than others?

IV RELATED WORK

Test Smells [10] characterize poor testing practices. While
smelly tests may contribute to an unhealthy test suite, we
argue that “test smelliness” and “test suite health” are two
separate concepts. On the one hand, test smells tend to be static
properties related to how individual tests are implemented,
thereby characterizing bad programming practice. Test suite
health, on the other hand, holistically characterizes how well
a complete test suite functions in giving developers fast and
reliable feedback about the correctness of their software.
Other Work on Test Quality (e.g., [2]) tends to focus on in-
dividual tests or factors of “good” tests, ignoring the potential
relationships between them. Jason Swett provides a different
definition of “Test Suite Health” [9] that also does not consider
the interplay between factors; and provides a manual check
service. Yet, our vision is that test suite health assessment
will be an automated process that provides recommendations
to improve the test suite health and potentially automated fixes.
ACKNOWLEDGMENTS. Phil McMinn is supported, in part, by
the EPSRC grant “Test FLARE” (EP/X024539/1).

REFERENCES

[1] M. Aniche, C. Treude, and A. Zaidman. How developers engineer test
cases: An observational study. TSE, 48, 2022.

[2] D. Bowes, T. Hall, J. Petric, T. Shippey, and B. Turhan. How good are
my tests? In Proc. WETSoM, 2017.

[3] M. Hilton, J. Bell, and D. Marinov. A large-scale study of test coverage
evolution. In Proc. ASE, 2018.

[4] E. Kuefler. Unit Testing. In T. Winters, T. Manshreck, and H. Wright,
editors, Software Engineering at Google: Lessons Learned from Pro-
gramming Over Time, chapter 12. O’Reilly Media, 2020.

[5] Y. Ledru, A. Petrenko, S. Boroday, and N. Mandran. Prioritizing test
cases with string distances. ASE, 2012.

[6] M. Maton, G. M. Kapfhammer, and P. McMinn. Exploring pseudo-
testedness: Empirically evaluating extreme mutation testing at the state-
ment level. In Proc. ICSME, 2024.

[7] O. Parry, M. Hilton, G. M. Kapfhammer, and P. McMinn. A survey of
flaky tests. TOSEM, 2021.

[8] M. F. Roslan, J. M. Rojas, and P. McMinn. Private — Keep out?
Understanding how developers account for code visibility in unit testing.
In Proc. ICSME, 2024.

[9] Jason Swett. https://www.codewithjason.com/test-suite-health-check.
[10] A. Van Deursen, L. Moonen, A. Van Den Bergh, and G. Kok. Refac-

toring test code. In Proc. XP2001, 2001.
[11] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry. A

comprehensive study of pseudo-tested methods. ESE, 2019.
[12] S. Yoo, M. Harman, P. Tonella, and A. Susi. Clustering test cases

to achieve effective and scalable prioritisation incorporating expert
knowledge. In Proc. ISSTA, 2009.


