
PSEUDOSWEEP: A Pseudo-Tested Code Identifier
Megan Maton

University of Sheffield, UK
Gregory M. Kapfhammer

Allegheny College, USA
Phil McMinn

University of Sheffield, UK

Abstract—Software testing remains a crucial practice for en-
suring and maintaining code quality. Yet, a critical issue remains:
the existence of pseudo-tested statements. Tests cover these
statements, but removing them does not trigger test failures. Since
no established tools address this challenge, this paper introduces
PSEUDOSWEEP, a novel tool that automatically identifies pseudo-
tested methods and statements in Java projects. PSEUDOSWEEP
combines method and statement deletion techniques to reveal
these maintenance problems. In addition to explaining the ap-
proach used by PSEUDOSWEEP, this paper details use-cases and
overviews results from experiments with PSEUDOSWEEP. The
tool is available (including set-up instructions and examples) at
https://github.com/PseudoTested/PseudoSweep and there is a
video demonstration at https://youtu.be/5QCsu7MbiXI.

I. INTRODUCTION

If a tool can remove production code without the test suite
failing, it is difficult to argue that this code is thoroughly tested.
This scenario, in which a test executes some program code and
yet a tool can remove it without causing a test to fail, means
that the code is “pseudo-tested”, which is a quality risk [9].

For instance, Listing 1 furnishes a formatTag method and
highlights its pseudo-tested statement on Line 3. The testFor-
matTag test executes all lines in this method but only contains
assertions that check the start and end tags. This means the
statement on Line 3, which places the content between the
tags, has no observable impact on the method’s output. Even
though the test executes this statement, a developer can delete
it without causing any tests to fail. Such code is either redun-
dant or requires further testing to detect its removal correctly.

Revealing pseudo-tested code at early testing stages will
enable developers to identify weaknesses or oversights in their
test suite before progressing to more expensive approaches.
For example, traditional mutation testing tools evaluate a test
suite’s bug-finding capability by inserting synthetic defects
into the code and executing the test suite against them to see
if they cause tests to fail [3], [4]. Despite extensive research
and development, mutation testing often remains costly [11].

Developers can identify pseudo-tested methods using a
branch of mutation testing called extreme mutation testing
(XMT), which removes entire method bodies (using a dummy
return value when required for compilation) and executes the
tests [9]. Prior work has found pseudo-tested methods in well-
tested subjects, including open-source Apache projects [9],
[14]. However, Maton et al. showed that non-pseudo-tested
methods still contained pseudo-tested statements [8]. High-
lighting such statements will help developers address simple
testing issues such as missing tests and partial assertions.

This paper introduces PSEUDOSWEEP, a tool that high-
lights pseudo-tested statements and methods in Java projects
(supporting JDK versions 8–12), thus enabling developers

1 public String formatTag(String tag, String content) {
2 String html = "<" + tag + ">";
3 html += content;
4 html += "</" + tag + ">";
5 return html;
6 }
7

8 @Test
9 public void testFormatTag() {

10 String str = formatTag("p", "hello world!");
11 assertThat(str, startsWith("<p"));
12 assertThat(str, endsWith("/p>"));
13 }

Listing 1. The source code of the formatTag method and its corresponding test
case called testFormatTag. The PSEUDOSWEEP tool presented in this paper
can automatically determine that the statement on line 3 is pseudo-tested.

to address testing inadequacies. Ensuring that the program
always compiles, PSEUDOSWEEP systematically removes each
covered method and statement from the source code of the
program under test and runs the test suite to detect elements it
can remove without impacting test outcomes. It surfaces these
elements to developers so that they can identify the testing
deficiency that may have caused it. This tool contributes a
novel implementation for identifying pseudo-tested statements,
thereby helping developers to address testing inadequacies
before committing resources to traditional mutation testing.

To demonstrate how developers can use our tool, we ran
it on the Caverphone2 class from commons-codec. We walk
through the outputs for the encode method and contrast
the findings from running PSEUDOSWEEP with what code
coverage would have revealed. We also overview experimental
results that explore the frequency and causes of pseudo-tested
statements in 27 real-world Java projects [8].

II. RELATED MUTATION TESTING TOOLS

The DESCARTES, MUJAVA, and MAJOR tools each imple-
ment deletion operators that could be used to detect some
areas of pseudo-tested code. This section investigates their ap-
proaches and operators and compares them to PSEUDOSWEEP.

Traditional Mutation Testing Tools

MUJAVA: The MUJAVA tool uses mutant schema generation
to embed all mutants into a metamutant [7]. This approach
manipulates the source code; however, embedding all mutants
into a single metamutant only requires a single compilation.
Deletion is a simple transformation, and therefore, using a
metamutant enables simple control of program execution and
a visual representation of the mutations for the user. MUJAVA
contains several different statement deletion operators, includ-
ing the capability to delete larger statement types such as for,
while and if statements. However, although the tool’s source
code is available, MUJAVA only supports up to Java 6.

MAJOR: The MAJOR tool employs a compiler-integrated
approach to transform the program’s attributed abstract syntax
tree (AST), enabling it to generate the mutants while compil-
ing the source code [6]. Therefore, MAJOR avoids introducing
mutants that cannot map to the original source code. MAJOR’s
implementation of statement deletion currently excludes some
statement types such as if statements. However, due to a lack
of access to the source code, we could not extend it.

The MUJAVA and MAJOR tools both implement versions
of the statement deletion operator. However, their divergent
approaches and differing sets of operators make neither tool
suitable for the focused detection of pseudo-tested statements.
To implement PSEUDOSWEEP, we have taken inspiration from
each of these tools and used JavaParser [12] to manipulate the
AST and produce a metamutant. Section III explains these
aspects of PSEUDOSWEEP’s implementation in greater detail.

PIT: PIT is a state-of-the-art tool for the mutation testing
of Java programs. It uses Java bytecode manipulation to insert
mutants into code, which is faster than the methods used
by other tools and is suitable for the mutation operators it
employs. Yet, this also means it can mutate code that does not
directly map to a section of source code, and the source code
descriptions of statements are not reproducible using bytecode,
making it unsuitable for a statement deletion operator.

A. Extreme Mutation Testing Tools

DESCARTES: The DESCARTES Mutation Engine for PIT is
the only tool focused on detecting pseudo-tested code [16]. As
it depends on the PIT mutation tool for Java, the DESCARTES
Engine uses Java bytecode manipulation to either remove
method bodies or replace them with default return values. This
implementation works successfully at the method level due to
bytecode representations of methods being clear to mutate.
Methods are also clearly defined code units; therefore, it does
not matter that the mutation occurred at the bytecode level.
Users can quickly identify which methods DESCARTES has
mutated, reducing mutation analysis time. However, bytecode
cannot directly map to Java statements, making it challenging
to implement statement deletion in a user-friendly manner.
Therefore, extending the DESCARTES engine to the statement
level is unsuitable for identifying pseudo-tested statements.

RENERI: The RENERI plugin observes the undetected code
transformations identified by DESCARTES to suggest potential
causes of the pseudo-tested methods like “no-infection”, “no-
propagation” and “weak-oracle” [15]. Experiments with Java
programs showed that these suggestions helped developers.
While useful for identifying causes of pseudo-tested methods,
RENERI does not offer suggestions at the statement level.

III. PSEUDOSWEEP: DETECTING PSEUDO-TESTED
ELEMENTS IN PROJECT SOURCE CODE

We designed PSEUDOSWEEP to identify and report pseudo-
tested statements and methods within the source code of a
Java project. By revealing these testing deficiencies before
developers commit resources to traditional mutation testing,
PSEUDOSWEEP provides helpful insights engendering test

Fig. 1. Diagram of PSEUDOSWEEP’s main components. Instrument, Sweep,
Analyze and Restore are entry points, run from the command line.

suite maturity. The tool focuses on detecting pseudo-tested
elements through deletion mutations. To achieve this, we
designed and implemented an appropriate set of operators.
Figure 1 overviews the core components of PSEUDOSWEEP.

A. Instrument

To keep the program’s source code, PSEUDOSWEEP dupli-
cates each Java Class file with a temporary one that has the
.java.orig file extension, enabling the reverting of the instru-
mented source code to the original with the Restore function.

1) Operators: Detecting pseudo-tested elements requires
operators that can delete elements of the code. The current
version of the tool operates at the statement and method levels;
therefore, the operator-set design targets these component
types. We look to extend this in future tool iterations to give
users control over the granularity of the results they receive.

a) Method Operators: We have developed our method-
level operators based on this set and described them in Table I.
If a Java method declares a non-void return type, then the
method requires at least one return statement at the end of the
method to compile. To check if a method is pseudo-tested,
PSEUDOSWEEP must delete the whole method. Therefore, we
must add a placeholder return statement to ensure compilation.
We use two default return values for each return statement
to mitigate the risk of returning the expected value. Table II
presents the default method return values.

b) Statement Operators: We have assembled six opera-
tors to detect pseudo-tested statements, as described in Table I.
We looked towards the statement deletion operator (SDL)
defined by Deng et al. [5]; however, their operator set required
additional operators such as a return value mutation operator
to make it suitable for identifying pseudo-tested statements.

For example, SDL only provides a single default return
value for all types other than boolean. These single defaults
leave room for equivalent mutants such as returning ‘0’ when
an assertion is expecting a ‘0’. To overcome this problem,
the DESCARTES Mutation Engine for PIT applies two default
value mutants and adds defaults for further types such as
Collections and Maps. We have extended PSEUDOSWEEP’s
implementation of SDL to include this as presented in Table II.

2) Metamutant: PSEUDOSWEEP implements these opera-
tors by creating a metamutant [13] that adds if statements to

TABLE I
Descriptions of the deletion mutation operators employed by PSEUDOSWEEP. In the “Example Transformation” column, the method calls to exec, fix

and eval are simplified. In the full instrumentation inserted by the tool, this source code would also include class information and the element type.

Operator: Description Applicable Element Types Example Source Code Example Transformation

MDR: Delete method
body and return default
value

Non-void Method 1 public int method () {
2 methodBody;
3 return 5;
4 }

1 public int method () {
2 if (exec(id)) {
3 methodBody;
4 return 5;
5 }
6 return (execDefault(id)) ? 0 : 1;
7 }

MDV: Delete method
body

Void Method 1 public void method () {
2 methodBody;
3 }

1 public void method () {
2 if (exec(id)) {
3 methodBody;
4 }
5 }

SDSS: Delete Statement Break, Continue, Do-while,
Expression, For, For Each,
If, Contains Inner Class,
Lambda, Switch, Try, While

1 statement; 1 if (exec(id)) {
2 statement;
3 }

SDSL: Delete statement
with label

Break, Continue 1 statement label; 1 if (exec(id)) {
2 statement label;
3 }

SDSR: Delete the
statement and return
default value

Return 1 return "string"; 1 if (exec(id)) {
2 return "string";
3 }
4 return (execDefault(id)) ? "" : "A";

SDVD: Delete
declaration initialisation

Variable declarations 1 int i=3; 1 int i=0;
2 if (exec(id)) {
3 i=3;
4 }

SFCT: Fix conditional
expression to True

Do-while, For, If, While 1 if (a < b) {
2 }

1 if(fix(eval() && a < b, id)){
2 }

SDLL: Delete loop
statement with label

For, While 1 label:
2 for(){
3 }

1 if (exec(id)) {
2 label:
3 for(){
4 }
5 }

TABLE II
Default return values for return statements.

Type Default Values

Boolean false true
Byte 0 1
Double 0 1
Float 0 1
Char \40 (space character) ‘A’
Short 0 1
Int 0 1
String “” “A”
Long 0 1
Collection null New ArrayList
Iterable null New ArrayList
List null New ArrayList
Queue null New LinkedList
Set null New HashSet
Map null New HashMap
Reference Type null null

the source code of the project that PSEUDOSWEEP manipu-
lates to “remove” individual code elements during a “Sweep”
(Section III-B). The metamutant approach ensures that the
mutants always directly map to the developer’s source code.

a) Statement-level metamutant: As shown by Table I, our
tool instruments statements by inserting an if statement around
them. The if statement’s conditional makes a call to PSEU-
DOSWEEP to check whether it should execute the contained
statement. The expression includes the class name, element

type and element number to enable PSEUDOSWEEP to identify
it. Where moving a statement into an if block causes scoping
issues and thus compilation concerns, the instrumentation uses
scenario-specific tactics. For instance, variable declarations
and return statements cannot change scope, so PSEUDOSWEEP
uses default values so that the program still compiles.

b) Method-level metamutant: We implement method-
level instrumentation by inserting a conditional if statement
around the method logic as demonstrated in Table I. We also
addressed scoping issues at the method level by adding default
values to relevant places to ensure the code could still compile.

The details of the mutants are recorded in class information
files, enabling developers to identify where PSEUDOSWEEP
placed the mutants in the original source code without requir-
ing them to inspect the metamutant. The Analyze command
also uses these files to identify the pseudo-tested code.

Methods such as simple getter/setter methods may be unim-
portant to test, therefore PSEUDOSWEEP is configurable to
skip their instrumentation, with a view to extend this to other
less-relevant statements, such as logging calls, in future work.

Due to the use of JavaParser [12], the projects that PSEU-
DOSWEEP can evaluate are limited to Java versions 8 to 12.
The tool cannot evaluate code containing var type definitions,
as type information is required to set default values. Currently,
the tool supports JUnit 4 and 5 test suites, with the scope

of adding compatibility with other frameworks. Deng et al.’s
definitions of SDL [5] and the terms used in JavaParser guide
PSEUDOSWEEP’s definitions of a statement; therefore, our
tool’s use may differ from other tools’ use of this word.

After instrumenting the source code, the user must compile
it with their configured build tool, including all their depen-
dencies and test classes, before proceeding to the next phase.

B. Sweep
The main algorithm for evaluating the instrumented class

files is similar to regular mutation analysis. Given a test
method, PSEUDOSWEEP executes it three times, without any
active mutations, to record the test results, times taken (to
calculate timeout values), and the methods and statements
executed. The tool execute the tests three times because a flaky
test result [10] could lead to missed pseudo-tested elements if
a test fails for reasons not related to the deleted element. If a
test fails at this stage, the tool discards it as it cannot be relied
upon for testing the code. Secondly, PSEUDOSWEEP iterates
through the list of executed elements, activating the relevant
mutations individually and checking for behaviour that differs
from the recorded outcomes, specifically failing, throwing an
exception or timing out. The test runs three times, attempting
to induce one of these outcomes. If one of these occurs,
PSEUDOSWEEP stops and moves on to the next element. It
then records the test outcomes in the result files for analysis
purposes. Due to internal thread tracking, projects containing
threaded code may cause errors and unreliable results.

C. Analyze
After evaluating all the mutants, PSEUDOSWEEP uses the

Analyze functionality to identify the not-covered, covered, and
pseudo-tested elements. The tool presents the lists of elements
and relevant statistics (e.g., % pseudo-tested) in a .json file per
Java class, and an overall project summary file. At this stage,
the developer can look directly at the metamutant to identify
the pseudo-tested elements, or invoke the Restore functionality
to return to their original code and use the provided location
information to begin addressing pseudo-tested code.

D. Restore
The Restore functionality deletes the instrumented file and

renames the original file back to filename.java. Although this
is a manual step in the current prototype, future versions of
the tool will internalise code restoration while also providing
visual coverage reports that display pseudo-tested elements.

IV. APPLYING THE PSEUDOSWEEP TOOL

We summarize how PSEUDOSWEEP has been evaluated and
how it can be used with a case study and a demonstration. Full
instructions on setting up the tool are available on GitHub [2].

A. Evaluation
This section summarises the results of an empirical evalua-

tion that applied PSEUDOSWEEP to 27 real-world projects, in-
cluding Apache projects commons-codec and commons-cli [8].
The study explored pseudo-tested statements’ frequency,
weaknesses, and causes within these Java projects. The study

found that identifying only pseudo-tested methods would miss
half of the pseudo-tested statements. PSEUDOSWEEP iden-
tified 350 pseudo-tested statements within methods required
for the test suite to pass. The study also revealed that these
statements obtained lower mutation scores, suggesting they
are less well-tested, with the leading causes of pseudo-tested
statements being missing/partial tests and assertions, which
accounted for 86 of the 119 pseudo-tested statements sampled.
B. Case Study

Our study of the causes of pseudo-tested statements in
27 real-world Java projects surfaced many examples [8],
including the commons-codec.language.Caverphone2.encode
method in the commons-codec project that this sec-
tion uses as a case study. The encode method en-
codes a source string into a CaverPhone 2.0 value. The
method uses a sequence of java.lang.String.replace(t, r) and
java.lang.String.replaceAll(r,r) method calls to substitute char-
acters and regular expression patterns within the source string
to produce CaverPhone 2.0 value. Twelve tests cover the
method, achieving 100% statement coverage. This method
is also “required” for the test suite to pass (i.e., it cannot
be removed without causing tests to fail). However, PSEU-
DOSWEEP identified that of the 63 statements in the method,
23 were pseudo-tested. The first author manually confirmed
this by deleting each statement and running the test suite.
We detail full replication instructions within the replication
GitHub Repository [1] with a link to the video presentation of
the tool evaluating this Java class in the README. We will
now look at how the tool identifies these statements.

1) Generating mutants: Given the source code of
commons-codec.language.Caverphone2.encode, as shown in
Listing 2, PSEUDOSWEEP applies the statement operators
described in Table I to each statement. The statement-level
operators also use if statements to execute the statement
logic conditionally. For example, given Line 14 in Listing 2,
PSEUDOSWEEP applies the SDSS operator as follows:
noneif (org.pseudosweep.I.exec("EXPRESSION", 9, "org.apache.

commons.codec.language.Caverphone2", "sdl")) {
nonetxt = txt.replaceAll("ˆtrough", "trou2f");
none}

2) Executing mutants: During the Sweep command, PSEU-
DOSWEEP executes the tests against the mutants by recording
the elements covered by each test and then running each test
against each of the mutated versions of the elements it covers.

3) Identifying pseudo-tested code: The Analyze command
enables the user to sweep test results further to reveal the
pseudo-tested components. The developer has two choices at
this stage: to Restore the code to the source code or to analyze
the metamutant directly. The metamutant contains the element
information displayed in the analysis file, enabling the user to
use file searches to quickly reach the location of the pseudo-
tested code. Otherwise, they can restore the system to its
source code and use the class information files to identify
the locations of pseudo-tested code elements. Once the user
has found the pseudo-tested element in the source code, they
can begin to analyse it. Using file search, the user can discover
which test cases covered the element and manually analyse the

1 @Override
2 public String encode(final String source) {
3 String txt = source;
4 if (SoundexUtils.isEmpty(txt)) {
5 return TEN_1;
6 }
7 txt = txt.toLowerCase(java.util.Locale.ENGLISH);
8 txt = txt.replaceAll("[ˆa-z]", "");
9 txt = txt.replaceAll("e$", "");

10 txt = txt.replaceAll("ˆcough", "cou2f");
11 txt = txt.replaceAll("ˆrough", "rou2f");
12 txt = txt.replaceAll("ˆtough", "tou2f");
13 txt = txt.replaceAll("ˆenough", "enou2f");
14 txt = txt.replaceAll("ˆtrough", "trou2f");
15 txt = txt.replaceAll("ˆgn", "2n");
16 txt = txt.replaceAll("mb$", "m2");
17 txt = txt.replace("cq", "2q");
18 txt = txt.replace("ci", "si");
19 txt = txt.replace("ce", "se");
20 txt = txt.replace("cy", "sy");
21 txt = txt.replace("tch", "2ch");
22 txt = txt.replace("c", "k");
23 txt = txt.replace("q", "k");
24 txt = txt.replace("x", "k");
25 txt = txt.replace("v", "f");
26 txt = txt.replace("dg", "2g");
27 txt = txt.replace("tio", "sio");
28 txt = txt.replace("tia", "sia");
29 txt = txt.replace("d", "t");
30 txt = txt.replace("ph", "fh");
31 txt = txt.replace("b", "p");
32 txt = txt.replace("sh", "s2");
33 txt = txt.replace("z", "s");
34 txt = txt.replaceAll("ˆ[aeiou]", "A");
35 txt = txt.replaceAll("[aeiou]", "3");
36 txt = txt.replace("j", "y");
37 txt = txt.replaceAll("ˆy3", "Y3");
38 txt = txt.replaceAll("ˆy", "A");
39 txt = txt.replace("y", "3");
40 txt = txt.replace("3gh3", "3kh3");
41 txt = txt.replace("gh", "22");
42 txt = txt.replace("g", "k");
43 txt = txt.replaceAll("s+", "S");
44 txt = txt.replaceAll("t+", "T");
45 txt = txt.replaceAll("p+", "P");
46 txt = txt.replaceAll("k+", "K");
47 txt = txt.replaceAll("f+", "F");
48 txt = txt.replaceAll("m+", "M");
49 txt = txt.replaceAll("n+", "N");
50 txt = txt.replace("w3", "W3");
51 txt = txt.replace("wh3", "Wh3");
52 txt = txt.replaceAll("w$", "3");
53 txt = txt.replace("w", "2");
54 txt = txt.replaceAll("ˆh", "A");
55 txt = txt.replace("h", "2");
56 txt = txt.replace("r3", "R3");
57 txt = txt.replaceAll("r$", "3");
58 txt = txt.replace("r", "2");
59 txt = txt.replace("l3", "L3");
60 txt = txt.replaceAll("l$", "3");
61 txt = txt.replace("l", "2");
62 txt = txt.replace("2", "");
63 txt = txt.replaceAll("3$", "A");
64 txt = txt.replace("3", "");
65 txt = txt + TEN_1;
66 return txt.substring(0, TEN_1.length());
67 }

Listing 2. The commons-codec.language.Caverphone2.encode method (with
blank space and comments removed for presentation purposes). Pseudo-tested
statements identified by PSEUDOSWEEP are highlighted with grey boxes.

deletion to decide their action plan for addressing the issue.
According to the code comments, the statement on Line 14
in Listing 2 is exclusive to the CaverPhone 2.0 specification.
However, PSEUDOSWEEP can remove this statement without
impacting test outcomes. Adding a test assertion such as:
noneassertEquals(encode("trough"), "TRF1111111")

to check the encoding of a string beginning with “trough”
means this statement is required for the test suite to pass.

V. CONCLUSIONS AND FUTURE WORK

This paper introduces PSEUDOSWEEP, a tool that detects
pseudo-tested statements so that developers can identify areas
of insufficient testing before committing resources to the
costly process of mutation testing. This paper explains PSEU-
DOSWEEP’s design and its approach to identifying pseudo-
tested methods and statements in Java programs. Finally, we
demonstrate how a developer can use the output from our
tool in their workflow, using an example from commons-
codec. Building on the experimental results demonstrating
the effectiveness of PSEUDOSWEEP [8], future work will 1)
Visualise pseudo-tested components into a coverage report;
2) Use pseudo-tested methods to remove redundant execution
of the statement-level mutants that they contain; 3) Reduce
the pseudo-tested code reported to a user at a given time
by identifying the most relevant elements, specifically high-
coverage, yet pseudo-tested, methods and pseudo-tested state-
ments found in required methods; and 4) Investigate pseudo-
tested components at different granularities and in other pro-
gramming languages. This work will further PSEUDOSWEEP’s
capability to expose the most critical pseudo-tested elements,
enabling developers to methodically improve their test suites.
Acknowledgements. Megan Maton is funded by the EPSRC
Doctoral Training Partnership with the University of Sheffield,
grant EP/W524360/1. Phil McMinn is supported, in part, by
the EPSRC grant “Test FLARE” (EP/X024539/1).

REFERENCES

[1] Demo replication: https://github.com/PseudoTested/pseudosweep-demo.
[2] PseudoSweep Tool: https://github.com/PseudoTested/PseudoSweep.
[3] J.H. Andrews, L.C. Briand, and Y. Labiche. Is mutation an appropriate

tool for testing experiments? In Proc. ICSE, 2005.
[4] R.A. DeMillo, R.J. Lipton, and F.G. Sayward. Hints on test data

selection: Help for the practicing programmer. Computer, 1978.
[5] L. Deng, J. Offutt, and N Li. Empirical Evaluation of the Statement

Deletion Mutation Operator. In Proc. ICST, 2013.
[6] René Just, Franz Schweiggert, and Gregory M. Kapfhammer. MAJOR:

An efficient and extensible tool for mutation analysis in a Java compiler.
In Proc. ASE, 2011.

[7] Y-S. Ma, J. Offutt, and Y-R. Kwon. MuJava: A mutation system for
Java. In Proc. ICSE, 2006.

[8] M. Maton, G. M. Kapfhammer, and P. McMinn. Exploring pseudo-
testedness: Empirically evaluating extreme mutation testing at the state-
ment level. In Proc. ICSME, 2024.

[9] R. Niedermayr, E. Jürgen, and S. Wagner. Will my tests tell me if I break
this code? In Proc. Int. Workshop on Continuous Software Evolution and
Delivery, 2016.

[10] O. Parry, M. Hilton, G. M. Kapfhammer, and P. McMinn. A survey of
flaky tests. ACM TOSEM, 2022.

[11] A. V Pizzoleto, F. C Ferrari, J. Offutt, L. Fernandes, and M. Ribeiro.
A systematic literature review of techniques and metrics to reduce the
cost of mutation testing. JSS, 2019.

[12] N. Smith, D. van Bruggen, and F. Tomassetti. JavaParser: Visited.
LeanPub, 2023.

[13] R.H. Untch, A.J. Offutt, and M.J. Harrold. Mutation analysis using
mutant schemata. In Proc. ISSTA, 1993.

[14] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry. A
comprehensive study of pseudo-tested methods. EmSE, 2019.

[15] O. L. Vera-Pérez, B. Danglot, M. Monperrus, and B. Baudry. Sugges-
tions on test suite improvements with automatic infection and propaga-
tion analysis. In arXiv:1909.04770, 2019.

[16] O. L. Vera-Pérez, M. Monperrus, and B. Baudry. Descartes: A PITest
engine to detect pseudo-tested methods — tool demonstration. In Proc.
ASE, 2018.

