
History-based Test Case Prioritization with  
Software Version Awareness 

 

Chu-Ti Lin1, Cheng-Ding Chen2, Chang-Shi Tsai1, Gregory M. Kapfhammer3 
1Dept. of Computer Sci. and Info. Eng. 

National Chiayi University 
Chiayi, Taiwan  

2Cloud Computing Center for Mobile Applications 
Industrial Technology Research Institute 

Hsinchu, Taiwan 

3Dept. of Computer Science 
Allegheny College 

Meadville, PA, USA 
 
 

Abstract—Test case prioritization techniques schedule the test 
cases in an order based on some specific criteria so that the tests 
with better fault detection capability are executed at an early 
position in the regression test suite. Many existing test case 
prioritization approaches are code-based, in which the testing of 
each software version is considered as an independent process. 
Actually, the test results of the preceding software versions may 
be useful for scheduling the test cases of the later software 
versions. Some researchers have proposed history-based 
approaches to address this issue, but they assumed that the 
immediately preceding test result provides the same reference 
value for prioritizing the test cases of the successive software 
version across the entire lifetime of the software development 
process. Thus, this paper describes ongoing research that studies 
whether the reference value of the immediately preceding test 
results is version-aware and proposes a test case prioritization 
approach based on our observations. The experimental results 
indicate that, in comparison to existing approaches, the presented 
one can schedule test cases more effectively. 

Keywords—Regression Testing, Test Case Prioritization 

I.  INTRODUCTION 

It is inevitable that the functionality of a software system 
may change during software development and maintenance. 
Each time the software is modified, regression testing is 
necessary to ensure the quality of the software system. That is, 
new test cases will be designed to ensure the correctness of the 
new functions and the original test cases should also be re-
executed to guarantee that all of the unmodified functions still 
work correctly. Thus, the test suite gradually grows in size as 
the software evolves and regression testing also becomes more 
and more expensive. It is also difficult to execute the entire test 
suite in a short time. Moreover, the fault detection capabilities 
of different test cases may not be the same. If the test cases 
with higher fault detection capability can be executed early in 
the process of regression testing, a high percentage of faults 
may still be detected even though the allocated time is not 
enough to finish the entire regression test suite. As a result, 
several test case prioritization approaches have been proposed 
to increase the effectiveness of regression testing [1]-[5]. 
According to [1], if T is a test suite, PT is the set of all possible 
permutations of the test cases in T, and f is a function from PT 
to the real numbers, the test case prioritization problem is to 
find PTT '  such that )]"()'()['")(")("( TfTfTTPTTT  . 

The majority of the existing test case prioritization 
approaches are code based and they schedule test cases 
according to the results of the analyses on the source code 
elements of the program [2], [4]. Even though experimental 
results have shown that the code-based approaches can 
improve the fault detection rate of the test suite, most of them 
are memoryless in that they model regression testing as a one-
time activity rather than a continuous process (i.e., they ignore 
the reference value of preceding tests across multiple software 
releases) [3]. Therefore, Kim and Porter [3] proposed a history-
based test case prioritization approach based on the historical 
fault information. Their experimental results suggested that 
historical fault information is valuable for improving the 
effectiveness of the regression testing process in the long term. 
Recently, Liu et al. [5] argued that, in addition to historical 
fault information, the information collected from the source 
code is also important for test case prioritization. Thus, they 
suggested prioritizing test cases based on information 
concerning both historical faults and the source code. 

However, both [3] and [5] assumed that the test result of 
each immediately preceding software version has the same 
importance for the test case prioritization of its successive 
version across all versions. This leads us to consider an open 
research question: is the reference value of the test result of the 
immediately preceding version of the software version-aware 
for the successive test case prioritization? This paper will 
explore this issue, propose a test case prioritization approach 
based on our observations, and give an empirical evaluation. 

II. VERSION-AWARE APPROACH 

Table I furnishes descriptive statistics that we collected 
about the Siemens programs from the Software-artifact 
Infrastructure Repository (SIR) [6], benchmarks that are 
frequently used to compare different test case prioritization 
methods. After analyzing the test results of all versions of the 
Siemens programs, we found that, for the test cases detecting 
faults in a specific version, there is a higher probability that 
they will detect faults again in the successive version. This 
confirms that the historical fault information deserves to be 
considered when prioritizing the tests during future regression 
testing, which is not in conflict with the arguments in [3] and 
[5]. Moreover, as the programs evolve, software developers are 
usually more familiar with the programs and their debugging 
skills should gradually improve. As a result, the phenomenon 
that a test case detects faults in two successive versions may 

This research was sponsored by the National Science Council of Taiwan 
(Grant: NSC 100-2221-E-415-007-MY2). 



get less and less significant. This conjecture conflicts with the 
assumption from [3] and [5] mentioned in Section I. The 
Siemens programs – replace, tcas, and totinfo – have at least 23 
versions.  Since this number of versions is much greater than 
the number for other programs in SIR, we analyzed their first 
23 versions to validate this conjecture. Fig. 1 shows the 
probability that a test case finds faults in a specific version if it 
detected faults in the immediately preceding version, as the 
programs evolve from the 2nd to the 23rd versions. The linear 
regression plot indicates that the probability tends to decrease 
as the programs evolve, thus supporting our conjecture. 

Recall that Liu et al. [5] argued that source code elements 
are also important for test case prioritization. Based on Liu et 
al.’s suggestion and our aforementioned observations, we 
assume: (i) both historical fault data and source code 
information are valuable for prioritizing test cases in the later 
software versions; (ii) the priorities of the test cases that 
detected faults in the immediately preceding version should be 
increased; (iii) the increment described in Assumption (ii) is 
software-version-aware and will linearly decrease as the 
programs evolve. Accordingly, we evaluate the version-aware 
priority of a specific test case in the k-th version by 









 ,0 if],/)[(

,0 if,

1 kVerskVersChP

kC
P

numkk

num
k

     (1) 

where Vers is the number of versions of the subject program, 
Cnum is the number of branches covered by the test case, and hk 
is the historical fault information (it takes 1 if the test case 
detected a fault in the (k1)-th version; otherwise, it takes 0). 
For the initial version, the presented approach gives the test 
case priority based on code coverage only; for other versions, 
the priority inherits that of the immediately preceding version 
and is adjusted according to the test result of the immediately 
preceding version, the code coverage of test case, and the 
version number of the program. 

III. PRELIMNARY EXPERIMENTAL ANALYSES 

In the experiments, we compared the presented approach 
with Kim and Porter’s, Liu et al.’s, and the randomly created 
prioritizations (i.e., test cases that are randomly reordered) for 
the SIR Siemens programs [6]. Additionally, we used the cost-
cognizant average percentage of fault detected (APFDC) [7] to 
evaluate the fault detection rate of each prioritized test suite 
since it is a commonly-adopted criterion. An APFDC value 
ranges between 0 and 100%, with a higher value indicating a 
better fault detection rate. Table 2 shows the APFDC value of 
the four approaches compared in this study. The results 
indicate that the presented method provides better APFDC 
values than the random approach for all of the Siemens 
programs. It also outperforms Kim and Porter’s and Liu et al.’s 
techniques for most of the Siemens programs. Considering the 
averages of the APFDC values across all of the Siemens 
programs, the presented approach still provides the best fault 
detection rates, thus demonstrating its potential. 

IV. CONCLUSION AND FUTRUE WORK 

Using the Siemens programs as experimental subjects, this 
paper invalidated an unsuitable assumption from most of the 
existing history-based approaches and presented a software-

version-aware approach that considers both source code 
information and historical fault data. The experimental results 
indicate that the presented approach provides a better fault 
detection rate, in terms of APFDC, for the Siemens programs. 
In future work, we intend to replace (1) by a full-featured 
model to adjust the software-version-aware test case priority 
more accurately. We will also conduct more experiments with 
case study applications that have more source code and tests. 

TABLE I.  DESCRIPTIONS AND STATISTICS OF SIR SIEMENS PROGRAMS 

Subject 
Programs

Num. of 
Versions

If a test case failed in 
a specific version 

If a test case passed in 
a specific version 

Prob. that it fails in the next version 
printtokens 7 6.78% 2.05% 

printtokens2 10 22.25% 3.95% 
replace 32 7.39% 1.78% 

schedule 9 3.79% 1.68% 
schedule2 10 7.55% 0.81% 

tcas 41 5.61% 2.78% 
totinfo 23 21.30% 5.96% 

 

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17 19 21

Prob. 
(%) 

Software
Versions 

Fitted linear regression model
xy 91.026.30   

Analyzed programs
replace 

tcas 
totinfo 

 

Fig. 1. The probability that a test case detects faults in two 
successive software versions as the programs evolve. 

TABLE II.  APFDC VALUES FOR THE COMPARED APPROACHES 

Programs Kim & Porter’s Liu et al.’s Random Presented 
printtokens 54.86% 70.12% 49.52% 70.11% 
printtokens2 79.25% 72.65% 50.68% 81.95% 

replace 72.62% 68.18% 49.42% 76.33% 
schedule 67.41% 56.13% 49.94% 63.27% 

schedule2 58.25% 51.05% 48.70% 60.27% 
tcas 66.52% 60.31% 50.23% 74.13% 

totinfo 69.83% 72.32% 48.96% 74.46% 
Average 66.96% 64.39% 49.64% 71.50% 

 

REFERENCES 
[1] S. Elbaum, A. G. Malishevsky and G. Rothermel, “Prioritizing test cases 

for regression testing,” Proc. ACM SIGSOFT Symp. Software Testing 
and Analysis, Auguest 2000, pp. 102-112. 

[2] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing test 
cases for regression testing,” IEEE Trans. on Software Engineering, vol. 
27, October 2001, pp. 929-948. 

[3] J. M. Kim and A. Porter, “A history-based test prioritization technique for 
regression testing in resource constrained environments,” Proc. 
ACM/IEEE Conf. Software Engineering, May 2002, pp. 119-129. 

[4] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case 
prioritization: a family of empirical studies,” IEEE Trans. on Software 
Engineering, vol. 28, February 2002, pp. 159-182. 

[5] W. N. Liu, C. Y. Huang, C. T. Lin, and P. S. Wang, “An evaluation of 
applying testing coverage information to historical-value-based approach 
for test case prioritization,” Proc. Asia-Pacific Symp. Internetware, 
December 2011, pp. 73-81. 

[6] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand, “Experiments on the 
effectiveness of dataflow- and controlflow-based test adequacy criteria,” 
Proc. ACM/IEEE Conf. Software Engineering, May 1994, pp. 191-200. 

[7] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. Elbaum, “Cost-
cognizant test case prioritization,” Technical Report TR-UNL-CSE-2006-
0004, March 2006. 


