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ABSTRACT
Unlike traditional programs, a database-centric application
interacts with a database that has a complex state and struc-
ture. Even though the database is an important component
of modern software, there are few tools to support the test-
ing of database-centric applications. This paper presents a
test coverage monitoring technique that tracks a program’s
definition and use of database entities during test suite ex-
ecution. The paper also describes instrumentation probes
that construct a coverage tree that records how the pro-
gram and the tests cover the database. We conducted ex-
periments to measure the costs that are associated with (i)
instrumenting the program and the tests and (ii) monitor-
ing coverage. For all of the applications, the experiments
demonstrate that the instrumentation mechanism incurs an
acceptable time overhead. While the use of statically in-
serted probes may increase the size of an application, this
approach enables database-aware coverage monitoring that
increases testing time from 13% to no more than 54%.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Verification, Experimentation

Keywords: database application, test coverage monitoring

1. INTRODUCTION
The database is a critical component of many modern soft-

ware applications. However, a database is useful for stor-
ing information only if users can correctly and efficiently
(i) query, update, and remove existing data and (ii) insert
new data. To this end, software developers often implement
database-centric applications that interact with a database.
Indeed, Silberschatz et al. observe that “practically all use
of databases occurs from within application programs” [28,
pg. 311]. Yet, a database-centric application is very differ-
ent from a traditional software system because it interacts
with a database that has a complex state and structure.

The goal of conventional test coverage monitoring (e.g.,
[19, 22, 30]) is to record the program elements that the tests
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cover. For example, traditional monitoring schemes track
the coverage of the nodes and edges in a program’s control
flow graph (CFG) (i.e., code coverage) or definition-use as-
sociations involving the program variables (i.e., data flow
coverage). These approaches are unsuitable for database-
aware coverage monitoring because they do not record how
a program covers the database as the test cases execute. If a
database-aware coverage criterion requires the tests to cover
all of the relations in the database, the monitor must be able
to determine how well the test cases fulfill this obligation.

This paper presents a database-aware test coverage moni-
tor (TCM) that uses instrumentation to determine how both
the program and the tests execute structured query lan-
guage (SQL) statements (e.g., select, update, insert, and
delete) that define and use the database. Suppose that
a program method submits a SQL select statement that
performs a query about the database’s state. In this cir-
cumstance, the coverage monitor intercepts and analyzes
the records that match the select query. Our technique
also finds out how the test cases inspect and change the
database. For example, assume that a test case uses the
SQL delete command to remove records from the database
before it executes the method under test (i.e., the tests may
purge the database so that the execution of one test does
not impact the other test cases). Once it captures the state
of the database before and after the execution of the delete,
the monitor identifies the records that were removed.

Figure 1 depicts the process of database-aware test cov-
erage monitoring. This diagram shows that the instrumen-
tation phase accepts an adequacy criterion (e.g., all-record-

DUs [12, 13]), a test suite, and the program under test.
We instrument the program under test by placing probes at
key locations within the CFG. The execution of the instru-
mented program and test suite yields the database-aware
coverage results. The coverage report records the definition
and use of relational database entities in the context of both
the method and the test case that perform the database in-
teraction. The database-aware coverage results can be lever-
aged to calculate the adequacy (i.e., the “quality” or “good-
ness”) of either a single test case or the entire test suite.

Similar to [7, 10], we focus on the testing and analysis
of database-centric applications that (i) are written in the
Java programming language and (ii) interact with a rela-
tional database management system (RDBMS) by using a
Java Database Connectivity (JDBC) driver to submit SQL
strings. We designed the TCM component so that it inter-
operates with any type of RDBMS, Java virtual machine
(JVM), and operating system (OS). The coverage monitor



also captures database interactions at all of the relevant lev-
els of interaction granularity: database, relation, attribute,
record, and attribute value [12, 13].

We designed the instrumentation technique to statically

introduce the probes before test suite execution, as depicted
in Figure 1. Alternatively, the coverage monitor performs
dynamic instrumentation by introducing the probes during

testing. Unlike the majority of coverage tools (e.g., Clover
[14], Jazz [19], and Emma [27]), we maintain the coverage
results on a per-test case basis in order to support efficient
regression testing [32]. The coverage report also enables
the assessment of test adequacy according to a variety of
database-aware criteria such as those that focus on data
flow (e.g., all-record-DUs) [13] or run-time behavior (e.g.,
call stack coverage) [17].

Using six database-centric applications as case studies, we
performed experiments to evaluate the performance of the
components that perform instrumentation and test coverage
monitoring (Figure 1 highlights these modules with a grey
background). The experimental results reveal that the static
instrumentation technique requires less than six seconds to
insert coverage probes into a database-centric application.
We found that the use of statically inserted probes length-
ens testing time by 12.5% while dynamic instrumentation
causes a 53% increase in test execution time. The empirical
results also demonstrate that using static instrumentation
to record coverage at the finest level of database interaction
granularity never increases testing time by more than 54%.

The important contributions of this paper include:

1. A discussion of the challenges that are associated with
database-aware test coverage monitoring (Sections 1
through 3).

2. The description of the probes and the test coverage
monitoring trees that record coverage information in a
database-aware fashion (Sections 4.1 through 4.4).

3. An aspect-oriented implementation of an instrumenta-
tion technique that efficiently generates and stores the
database-aware coverage report (Sections 4.5 and 4.6).

4. An empirical evaluation of the costs that are associated
with instrumenting the program and the test suite and
monitoring coverage during testing (Section 5).

2. MOTIVATING EXAMPLE
We use the FindFile database-centric application to mo-

tivate the need for a database-aware test coverage moni-
tor. FindFile stores meta-data about the files within a di-
rectory structure and it allows the user to search for files
that match a provided signature.1 For example, suppose
that FindFile’s database was populated with information
about all of the files in the /usr/bin/ directory. If the
command java FindFile /usr/bin/bi was executed on a
GNU/Linux workstation, the listFiles(String name) op-
eration would return a formatted string containing the file
paths /usr/bin/bibtex and /usr/bin/bison.
FindFile interacts with a database that contains a single

relation named Files. As shown in Figure 2, the Files rela-
tion contains two attributes called Id and Path. The Files

1
FindFile is bundled with the in-memory Java database avail-

able from http://www.hsqldb.org. Section 5 provides additional
details about FindFile since we use it as a subject during exper-
imentation. We clarify the discussion in Section 2 by simplifying
the description of FindFile’s methods and database.
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Figure 1: Test Coverage Monitoring Process.

relation stores records (e.g., 〈25, /usr/bin/bibtex〉) and at-
tribute values (e.g., 〈Id, 25〉). Figure 2 shows the steps
that occur during the testing of the listFiles method. In
the first step, testListFiles inputs a file signature (e.g.,
/usr/bin/bi) to the method under test. This method uses
the input signature to construct the SQL select statement
in Figure 2. During the second step, listFiles uses the
JDBC interface to submit the select to the database.2 Af-
ter executing the select query, the third step requires the
RDBMS to return a result set that contains the two match-
ing records. In the fourth step, listFiles analyzes the re-
sult set and places all of the file paths into a string that is
returned to the test case for further analysis.

A traditional coverage monitor would reveal that
testListFiles invoked the listFiles method with the pre-
viously described inputs and outputs. This conventional
report may also include information about the statements,
branches, and def-use associations within listFiles that
the test covered during execution. Coverage results that are
not database-aware do not reveal how the method used the
state (i.e., records and attributes values) and structure (i.e.,
relations and attributes) of FindFile’s database. Moreover,
the coverage monitor cannot extract this type of information
through traditional means such as examining the output of
the listFiles method. This is due to the fact that the
method under test may improperly process the result set
and thus create an incorrect return value. Figure 2 also pro-
vides an insert command that FindFile may submit during
testing. A standard coverage monitor is unable to determine
how the insert changes the state of the database because
it does not have access to the contents of the Files rela-
tion. Even though this example focuses on the SQL select

and insert statements, we also encounter the same need for
database-aware monitoring when the program employs the
SQL update and delete commands.

There are also a wide variety of techniques that cannot be
applied to the testing of FindFile without database-aware
coverage results. For instance, without the details concern-
ing a program’s database interactions, it is not possible to

2This query uses the ucase function to convert all of the charac-
ters in Path to uppercase. The select also uses the SQL wildcard
character (i.e., %) to match any string of zero or more characters.



Id

...

25

26

...

Path

...

/usr/bin/bibtex

/usr/bin/bison

...

Method Under Test 
 (listFiles)

 2. SQL Select  

Files
 Relation

Test Case 
 (testListFiles)

  4. Path(s)

  3. Result Set  

 1. Signature      

select Path
from Files
where ucase(Path) like ‘%/usr/bin/bi%’
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values(135, ‘/usr/bin/yacc’)

Figure 2: Test Coverage Monitoring Example.

calculate the adequacy of a test suite according to criterion
such as all-record-DUs [12, 13]. A database-aware coverage
monitor is also indispensable since many regression testing
tasks (e.g., reducing or prioritizing the test suite) use cov-
erage data. Techniques for database-aware debugging and
automated fault localization also require information about
how the program interacted with the database during test
suite execution. In summary, all of these examples clearly
motivate the need for a database-aware coverage monitor
that identifies how the relational database entities were de-
fined and used during test suite execution.

3. MONITORING CHALLENGES

3.1 Location of the Instrumentation
Figure 3 shows a program and a test suite that execute

on a JVM and interact with a Java-based RDBMS (we clas-
sify the database manager’s JVM as optional because some
RDBMSs are native applications). Previously developed ap-
proaches to instrumentation place the probes in the (i) pro-
gram under test [19], (ii) JDBC driver [3], (iii) RDBMS [6],
or (iv) operating system (OS) [9]. However, the TCM com-
ponent cannot place instrumentation into either the RDBMS
or the OS because we want the technique to function prop-
erly for any combination of a JDBC-accessible database and
a modern operating system. The JDBC Web site reveals
that there are currently over two hundred different JDBC
drivers that (i) are written in a combination of the Java,
C, and C++ programming languages and (ii) vary in their
internal structure and behavior [18]. Without a general and
automated technique for instrumenting any JDBC driver, it
is unrealistic for the coverage monitor to record database
interactions by placing probes into all current drivers.

Most conventional coverage monitors insert the probes
through the use of either a static approach or a dynamic
JVM-based technique [19, 22, 30]. The wide variety of JVMs
(e.g., the Sun HotSpotTMJVM and the Jikes Research Vir-
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Figure 3: A Database-Centric Application.

tual Machine (RVM) [1]) suggests that it is challenging to
dynamically introduce the probes with the JVM that runs
the test suite. In light of our analysis of the potential instru-
mentation locations, we implemented static and dynamic
techniques that only modify the program and the test suite.
Since a tester does not always have access to an application’s
source code, we designed the TCM component so that it can
operate on Java source code, bytecode, or a combination of
both types of program representations. Finally, the dynamic
technique operates on well-established interfaces that exist
in all JVMs (i.e., the current implementation performs load-

time instrumentation using the JVM class loader).

3.2 Types of Instrumentation
Database-aware coverage monitoring is challenging be-

cause different RDBMSs support divergent dialects of SQL.
For example, suppose that a database contains the relation
relj = {t1, . . . , tu}. Figure 4 provides two SQL insert com-
mands that copy records tbegin through tend from relj to
relj′ whenever predicate Q holds. The Oracle select uses
the rownum variable to bind the records in the select’s re-
sult set while the PostgreSQL statements use the limit and
offset keywords. Our coverage monitor supports the testing
of programs that use different RDBMSs because we restrict
the parsing of the SQL strings to the syntactical elements
that all dialects have in common. A probe determines how
the insert modifies the database by first identifying relj′
with a regular expression and then extracting and differenc-
ing the before and after states of this relation.

Even when parsing of the SQL commands is not required,
the probes must examine the state and structure of the
database without inadvertently introducing defects into the
program. Suppose that we are monitoring the coverage of
the listFiles method in Figure 2. The probes intercept
this result set and save the records that the select used.
Yet, most JDBC drivers return a result set that only sup-
ports a single iteration from t1 to tu. If the probe iterates
through the result set, then the instrumentation will incor-
rectly change the behavior of the program. The method
under test will terminate if it attempts to analyze a result
set that was exhausted by the test coverage monitor. Thus,
a probe must preserve the correctness of the monitored ap-
plication by transparently modifying the result set so that
it supports multiple iterations.

4. DATABASE-AWARE COVERAGE
4.1 Database-Centric Applications

A database-centric application A = 〈P, 〈D1, . . . , Dn〉, 〈S1,
. . . , Sn〉〉 consists of a program P and databases D1, . . . , Dn

that are specified by relational schemas S1, . . . , Sn. A data-
base D is a set of relations such that D = {rel1, . . . , relw}
and a relation relj = {t1, . . . , tu} is a set of records. For
a relation with z attributes, each record is an ordered set



PostgreSQL

insert into relj′

select A1, A2, . . . , Az
from relj limit recend offset recbegin
where Q

Oracle

insert into relj′

select A1, A2, . . . , Az from relj
where rownum ≥ recbegin
and rownum ≤ recend and Q

Figure 4: Syntax for the SQL Statements.

of attribute values such that tk = 〈tk[1], . . . , tk[z]〉. The
notation tk[l] denotes the value of the lth attribute of the
kth record in a specified relation. We represent P ’s method
m as a control flow graph G = 〈N , E〉 where N and E are
sets of nodes and edges, respectively.

Method m can contain one or more database interaction
points, each of which corresponds to a node Nr ∈ N . In the
context of database-centric applications that use the JDBC
interface, node Nr normally corresponds to the invocation of
a method such as executeQuery (for the SQL select state-
ment) or executeUpdate (for the SQL update, insert, and
delete commands). Figure 5 reviews the general format of
the SQL statements that m may submit to the database at
Nr (as demonstrated in Figure 4 we handle properly nested
SQL commands). Figure 5 also indicates that the SQL se-

lect statement is of type using while the insert’s type is
defining. We classify the update and delete operations as
type defining-using because they define relation relj and use
any of the relations and attributes that are referenced by Q.

4.2 Overview of the Coverage Trees
The tree-based coverage report follows the format in Fig-

ure 6 and stores the definition and/or use of a database
entity in the context of both the (i) current test case and
(ii) method that performs the database interaction. We de-
signed the coverage report to balance the benefits of fully
capturing the execution context and database interactions
with the time and space overheads associated with storing
complete information. A tree that records coverage in a fine
manner (e.g., the record or attribute value level) provides
more context for debugging than a tree that saves coverage
in a coarse fashion (e.g., the database or relation level). Yet,
the creation and storage of a fine granularity tree normally
incurs higher time overheads than the coarse tree.

Since database interactions occur via method calls, we
construct a coverage tree with probes that operate before

and after the execution of a method. Figure 7 compares the
types of trees that these coverage probes can create. The
test coverage monitor can construct either a dynamic call

tree (DCT) or a calling context tree (CCT). Since the DCT
contains a node for each method call, it preserves full test-
ing context at the expense of having unbounded depth and
breadth [2]. The DCT has unbounded depth because it fully
represents recursion and it has unbounded breadth since it
completely represents iterative method calls. Figure 7 indi-
cates that the DCT incurs low TCM probe time overhead
and moderate to high tree space overhead.

In contrast, the CCT has bounded depth because it coa-
lesces nodes and uses back edges when methods are recur-
sively invoked during testing. The CCT also has bounded
breadth since it coalesces nodes when testing causes the it-
erative invocation of methods [2]. Figure 7 shows that the

select A1, A2, . . . , Az
from rel1, rel2, . . . , relw
where Q

Type: using

(a)

delete from relj
where Q

Type: defining-using

(b)

insert into relj(A1, A2, . . . , Az)
values(v1, v2, . . . , vz)

Type: defining

(c)

update relj
set Al = F (A′

l
)

where Q

Type: defining-using

(d)

Q contains sub-predicates Vφ < Vψ
< ∈ {<,≤,>,≥, 6=, in,between, like}

Vφ ∈ {A1, A2, . . . , Az}
Vψ ∈ {string, pattern,nested select}

Figure 5: General Form of the SQL Operations.

CCT has low tree space overheads at the expense of slightly
increasing the execution time of the probes. Since both the
CCT and the DCT do not record a program’s interaction
with a relational database, they are not directly suited to
maintaining the coverage of the tests for a database-centric
application. To this end, we designed coverage trees (i.e.,
the DI-DCT and DI-CCT) that may incur additional time
and space overhead because they are database-aware.

4.3 Traditional Trees
We use τ to denote any type of coverage tree (includ-

ing those that are database-aware) and we use τdct and τcct
to respectively stand for a DCT and a CCT. The follow-
ing Definition 1 defines the dynamic call tree. The node
Na ∈ Nτ is the active node that the probe references when
it changes τdct. We use the notation in(Nρ) and out(Nρ)
to respectively refer to the in-degree and out-degree of a
node Nρ. Definition 1 requires τdct to have a distinguished
node N0, the root, such that τdct does not contain any edges
of the form (Nφ, N0) (i.e., in(N0) = 0). For all nodes
Nφ ∈ Nτ − {N0}, Definition 1 requires in(Nφ) = 1 (i.e.,
every node except the root must have a unique parent).

Definition 1. A dynamic call tree τdct is a four tuple 〈Nτ ,
Eτ , Na, N0〉 where Nτ is a set of nodes, Eτ is a set of edges,
Na ∈ Nτ is the active node, and N0 ∈ Nτ is the root with
in(N0) = 0. For all nodes Nφ ∈ Nτ − {N0}, in(Nφ) = 1.

The following Definition 2 defines the CCT that contains
the standard components of a DCT, in addition to EF , the
set of forward edges, EB, the set of back edges, and NB,
the set of nodes that receive a back edge. We say that Nρ

receives a back edge when (Nφ, Nρ) ∈ EB. Even though τcct
is not strictly a tree, we can distinguish the back edges in
EB from the other edges in Eτ . Definition 2 also states that
in(Nφ) = 1 for all CCT nodes Nφ ∈ Nτ − {N0} − NB (i.e.,
all nodes, except for the root and those nodes that receive
back edges, must have a unique parent).

Definition 2. A calling context tree τcct is a four tuple
τcct = 〈τdct, EF , EB,NB〉, where τdct is a dynamic call tree,
EF is the set of forward edges, EB is the set of back edges,
Eτ = EB ∪ EF is the full set of edges, and NB = {Nρ :
(Nφ, Nρ) ∈ EB} is the set of nodes that receive a back edge.
For all nodes Nφ ∈ Nτ − {N0} − NB , in(Nφ) = 1.
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We construct each type of coverage tree with the probes
Before(τ, σ) and After(τ ). The Before probe updates τ to
include a node for a structural element σ that corresponds
to a method invocation. The DCT’s Before instrumentation
(i) adds a new node to τ as a child of the active node, (ii)
sets the active node to σ, and (iii) returns the updated tree
to the coverage monitor. Upon completion of the method,
the After probe for the DCT (i) updates τ by setting the
new active node to the parent of the current Na and (ii)
returns the tree to the monitor.

The Before probe for the CCT manages the breadth of the
tree by examining the children of the active node, denoted
children(Na), in order to determine if σ has already been
called by the active node. If Nρ = σ for a Nρ ∈ children(Na),
then Before sets Na to the node Nρ. The CCT’s Before

probe controls the depth of τ by examining the execution
context in order to find a node that is equivalent to σ. If σ
is the same as a Nφ that is located above σ in the current
tree path, then Before (i) designates Nφ as the new active
node and (ii) creates a new edge from σ to Nφ. Refer to [2,
12] for more details about these trees and the probes.

4.4 Database-Aware Trees
The monitor can also create either a database interac-

tion dynamic call tree (DI-DCT) or a database interac-

tion calling context tree (DI-CCT). These database-aware
trees still respectively adhere to Definitions 1 and 2. How-
ever, the nodes within a DI-DCT or DI-CCT correspond
to a (i) method invocation (e.g., 〈call m〉), (ii) definition
of a database entity (e.g., 〈tk[l], define〉), or (iii) use of a
database entity (e.g., 〈relj ,use〉). When structural element
σ corresponds to a database interaction, the coverage mon-
itor uses four additional probes to construct the tree: Be-

foreDatabaseUse, BeforeDatabaseDefine, AfterDatabaseUse,
and AfterDatabaseDefine. The database-aware probes can
insert database entity nodes into the tree at all levels of in-
teraction granularity. These probes subsequently invoke the
appropriate Before and After based upon the type of τ (e.g.,
a probe calls the DCT’s Before when updating τdct).

Figure 8 summarizes the process of database-aware cov-
erage monitoring. After initializing the tree, the coverage
monitor iteratively executes a Before probe, the database in-
teraction point, and an After probe. These database-aware
probes (i) capture the submitted SQL string, (ii) extract and
analyze portions of the database’s state and/or the query’s
result set, and (iii) update the coverage tree with nodes
and edges that reflect the database interaction. If cover-

Tree DB? Context Probe Time Tree Space

CCT × Partial Low - Moderate Low

DCT × Full Low Moderate - High

DI-CCT X Partial Moderate Moderate

DI-DCT X Full Moderate High

Database? ∈ {×, X}
Context ∈ {Partial, Full}
Probe Time Overhead ∈ {Low, Moderate, High}
Tree Space Overhead ∈ {Low, Moderate, High}

Figure 7: Comparing the Coverage Trees.

age is recorded at the attribute value level, then the mon-
itoring of FindFile’s select statement in Figure 2 results
in a tree containing the leaf nodes 〈/usr/bin/bibtex,use〉
and 〈/usr/bin/bison,use〉. Similarly, the insert state-
ment requires the insertion of the leaves 〈135, define〉 and
〈/usr/bin/yacc,define〉. Upon the completion of testing,
the monitor stores the coverage tree so that it can be used
to calculate test adequacy according to a variety of database-
aware criteria (e.g., [12, 13, 17]).

A data flow-based coverage criterion, such as all-record-

DUs, requires the test suite to cover all of the database
interaction associations like DIA = 〈Ndef, Nuse, tk〉 [13]. For
instance, if test case Ti causes method m to define and use
the record tk, then we can mark DIA as covered. Traversing
a database-aware coverage tree reveals how the test cases
covered the data flow-based test requirements. Intuitively,
Ti covers DIA if the coverage tree contains the nodes N1 =
〈tk,def〉 and N2 = 〈tk,use〉 such that (i) 〈call Ti〉 is an
ancestor of 〈call m〉, (ii) 〈call m〉 is an ancestor of nodes
N1 and N2, and (iii) N1 is to the left of N2 in the tree.
Our database-aware coverage tree also supports the use of
McMaster and Memon’s call stack coverage criterion during
the process of regression testing [17]. If a test suite is being
reduced or prioritized with this strategy, then each path in
the coverage tree corresponds to a requirement.

4.4.1 Monitoring a Database Use
BeforeDatabaseUse employs the traditional Before probe

to update τ and thus record that a database interaction took
place at node Nr. The AfterDatabaseUse probe intercepts
the result set S that consists of the attribute values that
match the select statement.3 Since a select can specify
attributes from multiple relations, S may contain records
whose attribute values are derived from one or more rela-
tions in the database. For instance, the select query in
Figure 9 will yield a result set S that mixes attribute val-

ues from relations relj and drelj (i.e., we assume that Al is

an attribute of relj , relation drelj contains cAl, and Q is a
predicate as defined in Figure 5).

In order to correctly preserve the database interactions,
AfterDatabaseUse must determine the containing record and
relation for each attribute value in the result set. For
example, if relation relj contains attribute Al and S in-
cludes an attribute value from Al, then τ must have (i)
nodes to represent the use of relj and Al and (ii) the edge
(〈relj ,use〉, 〈Al,use〉) to indicate that relj contains Al. The
AfterDatabaseUse probe leverages the JDBC meta-data in-

3This discussion focuses on the use of the database that occurs
when the program submits a select query. The coverage monitor
employs regular expressions to extract the contents of the where
clause within the defining-using delete and update commands.
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terface and consults the relational schemas in order to first
identify the proper content and context of each database en-
tity and then update τ with the necessary nodes and edges.

4.4.2 Monitoring a Database Definition
After parsing the intercepted SQL statement to identify

relj as the relation subject to definition, BeforeDatabaseDe-

fine executes a select to extract relj ’s state. Once this
probe stores relj , it first modifies τ so that it contains a node
indicating that the database interaction took place and then
it passes control back to the coverage monitor. Upon com-
pletion of the SQL command, AfterDatabaseDefine extracts
the state of relj and uses differencing to determine how the
program changed the relation. We perform a symmetric re-

lational difference (SRD) to determine the difference(s) be-
tween relation relj (i.e., the relation before the interaction)
and relj′ (i.e., the relation after the interaction). When
recording coverage at the attribute value level, we use sym-

metric attribute value differencing (SAVD) to discern the
difference(s) between the record tk in relj and relj′ .

The monitor uses differencing techniques because they ac-
curately identify changes in a relation without relying upon
RDBMS-specific functions such as triggers. We did not
leverage the change detectors described in [4, 5] since they
operate on rooted trees with node labels instead of relational
data. We could not use the relational differencing system
developed in [16] because the use of lossy compression may
cause it to overlook a database modification and yield in-
correct coverage results. Instead, the test coverage monitor
uses a database-aware extension of the Myers difference al-
gorithm [21]. Figure 10 shows the output of the SRD and
SAVD techniques when an update statement defines the
database by changing the value of t2[2] from 3 to 4. In this
example, δrc denotes the set of record(s) with contents that
are different in the two relations and δav stands for the set of
attribute value(s) that have different values in the two input
records. Even though the example in Figure 10 focuses on
the update statement, the coverage monitor can also de-
tect any database modifications that result from executing
an insert or delete command.

4.5 Inserting the Instrumentation
Figure 11 shows a partial CFG before we introduce the in-

strumentation (the σ node corresponds to either a method
invocation or a database interaction). If σ is a method call,
then we insert a call to Before(τ, σ). We introduce a call

select Al, cAl
from relj , drelj
where Q
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Figure 9: Example of a Result Set.
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Figure 10: Differencing for the update Command.

to BeforeDatabaseUse or BeforeDatabaseDefine when σ cor-
responds to a database interaction. If Nr submits a SQL
statement and the type is statically detectable (e.g., the se-

lect operation is specified in the SQL or the executeQuery

method submits the string), then we add a call to the ap-
propriate database-aware probe. If static analysis does not
reveal whether Nr is a defining or a using SQL, then we
insert a call to a BeforeDatabase probe that (i) dynamically
determines the type of the database interaction and (ii) uses
this type information to invoke either BeforeDatabaseUse

or BeforeDatabaseDefine. BeforeDatabase invokes Before-

DatabaseDefine if Nr is of type defining and calls Before-

DatabaseUse otherwise. We also use the aforementioned
technique while inserting the database-aware After probes.

For each method represented by CFG G = 〈N , E〉, we in-
sert a call to one of the Before probes by first removing each
edge (Nφ, σ) ∈ E for all nodes Nφ ∈ pred(σ). The instru-
mentor also adds the edge (Nφ,Before(τ, σ)) to E for each
predecessor node Nφ (the notation succ(Nφ) and pred(Nφ)
respectively denotes the successor(s) and predecessor(s) of
node Nφ). The insertion of the edge (Before(τ, σ), σ) com-
pletes the introduction of Before. We introduce an After

probe by first removing the edge (σ, Nρ) ∈ E for each node
Nρ ∈ succ(σ). Next, we add the edge (σ,After(τ )) and in-
troduce (After(τ ),Nρ) for all nodes Nρ ∈ succ(σ).

4.6 Implementation Details
We implemented the current version of the test coverage

monitor with the Java 1.5 and AspectJ 1.5 programming
languages. AspectJ supports the introduction of arbitrary
code segments at certain join points within a Java applica-
tion. A join point is a well-defined location in a program’s
CFG. We use AspectJ to define (i) pointcuts that identify
specific join points and (ii) bodies of advice that execute be-
fore and after the pointcut [15]. The test coverage monitor
defines pointcuts and before and after advice that it uses
to construct the DCT, CCT, DI-DCT, and DI-CCT. The
coverage monitor also employs aspects that (i) initialize the
coverage tree before the first test case runs and (ii) store the
tree prior to the conclusion of test suite execution. Addi-
tional aspects preserve the semantics of the program under
test by ensuring that all of the result sets support multiple
iterations, as discussed in Section 3.2.

The static instrumentor can operate in a batch mode that
inserts TCM probes into multiple applications during a sin-
gle run. The test coverage monitor must place static instru-
mentation into the database-centric application each time
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Figure 11: Inserting the Coverage Probes.

the source code of the program or the test suite changes.
The dynamic approach to instrumentation introduces the
probes during testing. The load-time dynamic instrumentor
introduces the probes on a per-class basis with either the
JVM tools interface (JVMTI) or a custom class loader. The
flexibility that dynamic instrumentation affords is offset by
the fact that this approach often increases the time overhead
of testing more than the use of statically inserted probes.

5. EMPIRICAL EVALUATION
We designed the experiments with the intent of measuring

the (i) time overhead of statically inserting the probes, (ii)
impact that static instrumentation has on the space over-
head of an application, and (iii) time overhead associated
with test coverage monitoring. In future empirical studies,
we will evaluate regression testing techniques that use the
coverage results. For this experiment, we executed the static
instrumentor and the coverage monitor in ten separate trials
for each case study application and we report an arithmetic
mean (standard deviations were uniformly small and thus
we do not provide them in the data tables). We performed
all of the experiments on a GNU/Linux workstation with
kernel 2.6.11-1.1369, a dual core 3 GHz Pentium IV proces-
sor with 1 MB of L1 cache, and 2 GB of memory.

The empirical study used six database-centric applications
that range in size from 548 to 1455 non-commented source
statements (NCSS), as summarized in Figure 12 (the term
“Methods” refers to any executable code body within the
program, including the test cases). These case study ap-
plications employ a wide variety of strategies to test the
program’s interaction with a database that contains up to
nine relations. The test suite for each case study application
uses the DBUnit 2.1 extension of JUnit 3.8.1. Every ap-
plication interacts with an HSQLDB in-memory relational
database that executes within the same JVM as the appli-
cation itself. Since the applications use JDBC, it is possible
to configure the programs to use other databases such as
PostgreSQL [20] or MySQL [33]. Figure 13 shows that the
test suite ranges in size from 13 to 51 test cases and the tests
normally comprise between 30 and 60% of the NCSS. As in-
dicated in Figure 14, an application contains between 7 and
45 database interaction points. Since the tests often iter-
atively invoke the methods that contain these interactions,
the majority of the points are executed many times.

Even though our implementation of the TCM component
supports dynamic instrumentation with either the JVMTI
or a custom class loader, the experiments focus on mea-

Name Classes Methods NCSS Per

Reminder (RM) 9 55.0 548.0 Program

6.11 60.89 Class

9.96 Method

FindFile (FF) 5 49.0 558.0 Program

9.8 111.6 Class

11.39 Method

Pithy (PI) 11 73.0 579.0 Program

6.64 52.64 Class

7.93 Method

StudentTrack (ST) 9 72.0 620.0 Program

8.0 68.89 Class

8.61 Method

TransactMan (TM) 6 87.0 748.0 Program

14.5 124.67 Class

8.6 Method

GradeBook (GB) 10 147.0 1455.0 Program

14.7 145.5 Class

9.9 Method

Figure 12: Case Study Applications.

Application # Tests Test NCSS / Total NCSS
RM 13 227/548 = 50.5%
FF 16 330/558 = 59.1%
PI 15 203/579 = 35.1%
ST 25 365/620 = 58.9%
TM 27 355/748 = 47.5%
GB 51 769/1455 = 52.8%

Figure 13: Characterization of the Test Suites.

suring the performance of the class loading approach. Since
most Java virtual machines (e.g., the Sun JVM and the Jikes
RVM) use a similar type of class loader interface, this choice
ensures that our experimental results are more likely to gen-
eralize to other execution environments. We also designed
the experiment in this manner because our preliminary re-
sults revealed that the “heavy weight” JVMTI introduced
significant time overheads, in confirmation of prior results
[24]. We configured the static instrumentation technique to
operate on the bytecode of a case study application.

5.1 Results Analysis
Instrumentation. Figure 15 presents the time overhead

associated with the static instrumentation of the case study
applications. For the column labeled “All,” we used batch
mode to insert probes into all of the case study applications.
For the smaller applications, instrumentation never takes
more than 4.5 seconds. The experiments reveal that the in-
strumentation of a larger application (e.g., GB) incurs one
additional second of time overhead when compared to in-
strumenting a smaller application (e.g., FF). Across all of the
case study applications, static instrumentation takes 4.72
seconds on average. Batch mode completes the insertion of
probes into every application in less than nine seconds. In
summary, we judge that our approach to static instrumen-
tation introduces the probes with minimal time overhead.

Opting for flexibility instead of a minimal increase in space
overhead, we insert the instrumentation before and after a
database interaction rather than placing probes within the
JDBC driver itself (see Section 3.1 for more details about
this choice). Therefore, the space overhead metric includes
both (i) the bytecode instructions inserted at the boundaries
of all method invocations and database interactions that ex-
ist within the program and the tests and (ii) the coverage
monitoring probes themselves. Since many modern JVMs
natively support Jar and Pack compressed archives [25], we



Application executeUpdate executeQuery Total
RM 3 4 7
FF 3 4 7
PI 3 2 5
ST 4 3 7
TM 36 9 45
GB 11 23 34

Figure 14: Summary of Database Interactions.

App FF PI RM ST TM GB All

Time (sec) 4.39 4.40 4.40 4.39 5.17 5.58 8.69

Figure 15: Static Instrumentation Time.

report the size of the bytecodes with and without the use of
compression. The results in Figure 16 describe the impact
of static instrumentation across all case study applications.
If we consider the use of Jar, then statically inserting the
probes increases space overhead by 420%. Since the instru-
mented application is highly compressible with Pack, it is
possible to reduce the costs for the storage and network
transmission of these bytecodes.

Space overhead is also high because the bytecode for a call
to the Before probe must (i) store the contents of the pro-
gram stack in local variables, (ii) check to ensure that cover-
age monitoring is enabled, (iii) load the probe, and (iv) in-
voke the probe. The instrumentor also adds additional byte-
code instructions to handle any exceptions that might be
thrown by a probe (e.g., we use exception handlers when the
storage of a tree exceeds the available disk space). For exam-
ple, the constructor for the org.hsqldb.sample.FindFile

class contains three bytecode instructions before instrumen-
tation and twenty-seven afterward. Finally, a noteworthy
design choice of the AspectJ compiler is that it accepts an
increase in static application size for a reduction in execu-
tion time by always using additional bytecode operations
instead of Java’s reflection mechanism [11].

Test Coverage Monitoring. During the comparison
of the static and dynamic instrumentation techniques, we
configured the TCM component to generate a traditional
coverage tree and then we ran the test suite. Figure 17
provides the average test coverage monitoring time across
all applications. The empirical results reveal that statically
inserted probes increase testing time by 12.5% when the
monitor creates a CCT. For the smaller applications (e.g.,
RM and FF), the Static-CCT configuration increases time by
no more than 8%. For larger applications that contain the
most method calls and database interactions (e.g., TM and
GB), Static-CCT’s increase is less than 15%. The results
in Figure 17 also demonstrate that it is more expensive to
(i) dynamically construct a tree instead of using static in-
strumentation and (ii) create a DCT as an alternative to
a CCT. We conclude that static instrumentation enables
efficient coverage monitoring when the program changes in-
frequently and the flexibility of dynamic monitoring comes
with a moderate increase in time overhead.

For the experiments that measure how the variation of
database interaction granularity impacts testing time, we
always used static instrumentation to construct a database-
aware CCT. As shown on the horizontal axis of the graphs in
Figure 18, we executed the test coverage monitor for all ap-
plications and all levels of database interaction granularity
(e.g., P stands for the conventional program coverage tree
and Av denotes a tree containing attribute values). For
several applications such as RM, FF, and GB, we observe that

Compress Before Instr (bytes) After Instr (bytes)

None 29275 887609

Jar 15623 41351

Pack 5699 34497

Compression Probe Size (bytes)

None 119205

Jar 40017

Pack 35277

Jar: ((41351 + 40017 − 15623)/15623) × 100 = 420%

Figure 16: Static Space Overhead.

Instr Tree TCM Time (sec) Per Incr (%)

Static CCT 7.44 12.5

Static DCT 8.35 26.1

Dynamic CCT 10.17 53.0

Dynamic DCT 11.0 66.0

Normal Average Testing Time: 6.62 sec

Figure 17: Static and Dynamic Monitoring Time.

there is only a small increase in time overhead when we vary
the database interaction level (the diamonds at the top of
the bars in Figure 18 indicate that the standard deviation
across the trials was very small). For RM, FF, and GB, con-
structing an Av-level tree instead of a traditional CCT in-
creases testing time by less than 6%. This is due to the fact
that a test for these applications normally interacts with a
small number of database entities.

Figures 18(c) and (d) demonstrate that monitoring time
for PI and ST markedly increases as the database interac-
tion granularity transitions from the P to the Av level.
This phenomenon occurs because both PI and ST have tests
that iteratively interact with a large portion of the relational
database and this type of testing behavior necessitates the
insertion of many nodes and edges into the coverage tree.
PI shows a more noticeable increase at the attribute value
level than ST because it interacts with a relation that has
three attributes while ST’s relation only contains two at-
tributes. However, both PI and ST demonstrate acceptable
time overheads when we record coverage at the record level
(e.g., 9.317 seconds for PI and 9.941 for ST). Figure 18(e)
reveals that it takes longer to record TM’s coverage at the
Rc-level than it does at the Av-level. This result is evi-
dent because TM’s test cases create a relation that normally
contains more attributes than records.

Figure 19 provides the average value of coverage monitor-
ing time across all applications when we varied the database
interaction granularity. These results indicate that we can
efficiently monitor coverage at all levels of interaction if we
use static instrumentation to construct a database-aware
CCT. For example, coverage monitoring at the relation level
only incurs a 14.20% average increase in testing time. The
TCM component can record coverage at the attribute value
level with a 53.17% increase in time overhead.

Since the size of the coverage tree often increases the time
and space overheads associated with monitoring, we mea-
sured tree size in terms of the (i) number of nodes and (ii)
in-memory size of the tree. In order to calculate tree size,
we traverse the tree in the JVM’s heap and measure the
size of each node using the technique described in [12, 23].
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Figure 18: Test Coverage Monitoring Time at Different Database Interaction Levels.

DB Level TCM Time (sec) Per Incr (%)

Program 7.44 12.39

Database 7.51 13.44

Relation 7.56 14.20

Attribute 8.91 34.59

Record 8.90 34.44

Attribute Value 10.14 53.17

Figure 19: Database Interaction Granularity.

We report the tree sizes at the program, relation, record,
and attribute value levels because (i) P provides a base line,
(ii) Rl is structural, and (iii) Rc and Av are state-based.
The results in Figure 20 indicate that the DI-CCT is always
smaller than the corresponding DI-DCT. Moreover, the Av-
level DI-CCT is approximately the same size as the P-level
DCT. This result suggests that the inclusion of either fine
grained information about the database interactions or full
execution method context will cause the same increase in
the size of the coverage report. Figure 20 also shows that
the Av-level DI-DCT contains an order of magnitude more
nodes than the comparable DI-CCT. We found that only
the Rc and Av-level DI-DCT introduced sufficient memory
pressure to force extra invocation(s) of the JVM’s garbage
collector and noticeably increase coverage monitoring time.

5.2 Threats to Validity
The experiments described in this paper are subject to

validity threats. Internal threats to validity are those factors
that have the potential to impact the measured variables
defined in Section 5.1. One internal validity threat is asso-
ciated with defects in the prototype of the database-aware
coverage monitor. We controlled this threat by visualizing
small TCM trees and checking them to ensure correctness.
We also implemented a wide variety of automated checks
in order to ensure that the trees adhere to the structure
described by Figure 6 and Definitions 1 and 2.

External threats to validity are factors that limit the abil-
ity to generalize the experimental results. Since the empiri-
cal studies described by this paper use a limited number of

case study applications, we cannot claim that these results
are guaranteed to generalize to other database-centric appli-
cations. Another threat to external validity is related to the
size of the selected case study applications, test suites, and
relational databases. Yet, if we compare our case study ap-
plications to those that were used in other studies by Tonella
[31] (mean size of 607.5) and the Siemens application suite
[26] (mean size 354.4), the average size of our programs and
test suites (mean size 571) is comparable to the size of the
other applications. Since our applications interact with a
relational database, they may be more substantial than the
programs used in these previous studies. Our study also fo-
cused on six small to moderate size applications that vary
in terms of their NCSS and the type of database interaction
because there are no large database-centric applications in
the software-artifact infrastructure repository [8]. To further
control this type of threat, we configured each application
to interact with the real world HSQLDB RDBMS that is
used in current applications such as OpenOffice.

6. RELATED WORK
There are many existing approaches to test coverage moni-

toring [14, 19, 22, 27, 30]. However, none of these techniques
were explicitly designed to monitor a program’s interaction
with a relational database. Several recent papers have also
focused on the testing and analysis of database-centric ap-
plications [6, 10, 29]. While Chays et al. present a test
data generation technique that operates in a partially au-
tomated manner [6], their AGENDA framework does not
address the challenges of coverage monitoring. Even though
[29] presents a coverage criterion for select queries, they do
not focus on test coverage monitoring and their approach
does not handle SQL statements that define the database.
The present work is also distinguished from other mecha-
nisms for constructing call trees (e.g., [2, 17]) because our
trees capture details about database coverage.

Halfond and Orso describe a test adequacy criterion that
concentrates on the coverage of SQL “command forms” [10].
This paper is closely related to our work because it contains
a brief description of a test coverage monitor. Whereas we



DB Level CCT Nodes (#) DCT Nodes (#) CCT Size (KB) DCT Size (KB)

Program (P) 341 7157 125 2009

Relation (Rl) 583 10445 179 2740

Record (Rc) 1421 11960 818 3694

Attribute Value (Av) 6833 32021 2152 9108

Figure 20: Size of the Test Coverage Monitoring Tree.

designed our tree-based report to support the calculation of
adequacy according to multiple criteria (e.g., [12, 13, 17]),
their approach to monitoring is specifically tailored for a sin-
gle adequacy criterion. Unlike our technique, the monitor
in [10] does not focus on how the program and tests interact
with the state and structure of the database. Moreover, Hal-
fond and Orso do not empirically evaluate the performance
trade-offs associated with their coverage monitor [10].

7. CONCLUSIONS AND FUTURE WORK
This paper presents a database-aware test coverage mon-

itor that uses instrumentation to capture and analyze the
database interactions that originate from the program and
the test suite. The instrumentation probes create a coverage
tree containing nodes and edges that represent a program’s
definition and use of relational database entities. The empir-
ical results demonstrate that coverage monitoring increases
testing time from 13% to no more than 54%, depending upon
the granularity at which the monitor tracks the database
interactions. As part of future work, we intend to further
improve efficiency by implementing demand-driven instru-
mentation techniques that insert and remove probes at the
method or instruction level [19]. We will also leverage the
coverage results to perform database-aware regression test-
ing tasks such as test suite reduction and prioritization [12,
17]. Finally, we will measure the performance of the cov-
erage monitoring and regression testing tools when we use
them with larger database-centric applications.
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