Using Coverage Effectiveness to
Evaluate Test Suite Prioritizations

Gregory M. Kapfhammer
Department of Computer Science
Allegheny College

gkapfham@allegheny.edu

ABSTRACT

Regression test suite prioritization techniques reorder a test
suite with the goal of ensuring that the reorganized test suite
finds faults faster than the initial ordering. It is challeng-
ing to empirically evaluate the effectiveness of a new test
case arrangement because existing metrics (i) require fault
seeding or (ii) ignore test case costs. This paper presents
a coverage effectiveness (CE) metric that (i) obviates the
need to seed faults into the program under test and (ii) in-
corporates available data about test case execution times.
A test suite is awarded a high CE value when it quickly
covers the test requirements. It is possible to calculate cov-
erage effectiveness regardless of the coverage criterion that
is chosen to evaluate test case quality. The availability of an
open source CE calculator enables future case studies and
controlled experiments to use coverage effectiveness when
evaluating different approaches to test suite prioritization.

Categories and Subject Descriptors: D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Verification, Experimentation

Keywords: test suite prioritization, coverage effectiveness

1. INTRODUCTION

Regression testing techniques ensure that the addition of
bug fixes or new functionality does not negatively impact
the correctness of a software application. Since regression
testing may be prohibitively expensive in terms of test case
execution time [3], prioritization approaches reorder a test
suite so that the highest priority tests are executed earlier
in the testing process. With the ultimate goal of finding
program faults faster, a prioritization method could reorga-
nize a test suite so that the tests rapidly achieve complete
coverage of the test requirements. Beyond evaluating the
efficiency of the prioritization algorithm, it is also impor-
tant to measure the effectiveness of the reordered test suite
created by the prioritizer.

Since both researchers and practitioners must assess the
usefulness of a prioritization technique, the software engi-
neering community recently developed several measures of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WEASEL Tech’ 07, November 6, 2007, Atlanta, Georgia, USA.

Copyright 2007 ACM 978-1-59593-880-0/07/0011 ...$5.00.

Mary Lou Soffa
Department of Computer Science
University of Virginia
soffa@cs.virginia.edu

effectiveness. Rothermel et al. and Saff et al. respectively
proposed the average percentage of faults detected (APFD)
[3] and the time to failure (TTF) [4] as two metrics for em-
pirically evaluating a prioritized test suite. APFD classifies
a test ordering as highly effective if it rapidly exposes the
faults that were seeded into the program under test. Accord-
ing to the TTF metric, a test prioritization is highly effective
if it detects the first fault in a short amount of time. While
the seeded defects may be chosen from the known defects in
the program under test, these metrics can also be calculated
after using a mutation testing tool to insert synthetic faults.
If a mutation tester is not available, then it is also possible to
manually seed faults into the source code of an application.
Yet, reliance upon manual fault seeding can be problematic
because it is costly, prone to error, and a potential source
for experimental bias.

Since high coverage test cases are more likely to reveal pro-
gram faults than those with low coverage [1], it is sensible to
reorder test suites in a manner that improves the rate of re-
quirement coverage. As an alternative to fault-based metrics
such as APFD and TTF, Li et al. use coverage-based metrics
such as the average percentage of blocks covered (APBC) [2].
APBC identifies a test suite ordering as highly effective if
it quickly covers the basic blocks within the program under
test. Even though APBC obviates the need for fault seeding,
it ignores the costs associated with executing a test case and
thus it may inaccurately characterize effectiveness. This pa-
per describes a coverage effectiveness (CE) metric that fully
incorporates both the cost and the coverage of each test
case. CE is useful when manual fault seeding is too costly
or mutation testing is not feasible due to tool unavailability.
In order to better control the threats to construct validity,
we advocate the use of CE in conjunction with previously
developed metrics such as APFD, TTF, and APBC.

The calculation of CE requires the creation of a cumulative
coverage function that describes how requirement coverage
varies over time. We construct this coverage function un-
der the assumption that a requirement is marked as covered
upon the completion of one of its covering tests. Integrat-
ing this function yields the coverage area of the test suite.
Intuitively, a large coverage area suggests that a particular
test suite reordering is highly effective. In support of an
approach to comparing different prioritizations of the same
test suite, we define coverage effectiveness as the ratio be-
tween the reordered suite’s coverage area and the coverage
area of the ideal test suite that immediately covers all re-
quirements. As defined, a CE value falls inclusively between
0 and 1 with a high value indicating a good test suite.

Test Case || Cost (sec) Requirements
Ry | R2 | R3 | Ra | Rs
T, 5 v v
T 10 v v v v
T3 4 v v v

Total Testing Time = 19 seconds

Figure 1: Characteristics of a Test Suite.

Ordering CE CE,

Ty To T3 .3789 4
T T3 Ts .5053 4
Ty Ty T3 .3789 | .5333
Ty T3 T .4316 .6

T3 Ty To .5789 | .4557
T3 To Th .5789 | .5333

Figure 2: Coverage Effectiveness Values.

2. FORMULATING THE METRIC

When provided with cost and coverage information, as
depicted in Figure 1, it is possible to calculate the coverage
effectiveness of test suite 7', denoted CE(T"). If test cost in-
formation is not available, then we can assume that each test
consumes a single unit of time and subsequently compute
CEu(T), the unit coverage effectiveness of T. For example,
suppose that a test suite 7' = (T1,75>,73) and it covers a
total of five requirements while testing program P. These
requirements might be (i) nodes and edges in the program’s
control flow graph, (ii) definition-use associations, or (iii)
call tree paths. Figure 1 characterizes test suite T" according
to execution time and requirement coverage (e.g., test To
takes ten seconds to execute while 77 and T3 respectively
consume five and four seconds).

Figure 2 furnishes the CE and CE, values for the 3! =
3x2x1 = 6 different orderings of test suite 7. This example
demonstrates that the inclusion of test case execution costs
does impact the measurement of effectiveness. For instance,
CE. equivalently ranks the orderings O = (1,75, T3) and
O = (Th,T5,T>) while CE classifies the latter as more ef-
fective. This result is due to the fact that O2’s first two
tests cover four requirements in nine seconds while the cor-
responding tests in O; take fifteen seconds to cover four re-
quirements. For a given test order, CE may be higher than
CE, or vice-versa. For example, (T%,7T1,7T3) results in a low
value for CE and a high CE, score because CE incorporates
the substantial cost of running 7> and CE, assumes that
T5’s running time is equivalent to the other test cases.

Suppose that a testing tool creates test suites 7’ and T
after applying two different prioritization techniques to the
original test suite 7. If CE(T") > CE(T"'), then we know
that 7" is more coverage effective than 7" and thus we would
prefer the first approach to prioritization instead of the sec-
ond. Equation (1) defines CE(T') € [0, 1] such that the nu-
merator is the integral of C'(T,t), the requirement coverage
for test suite T" at time ¢ during test execution. Equation (1)
shows that the denominator is the integral of C(Tt), the re-
quirement coverage for the ideal version of 7T'. Calculating
CE(T) requires the integration of both the C' and C func-
tions in the closed interval between 0 and ¢t(n). Equation (2)
defines t(m) as the time required to execute the first m test
cases in T. For example, ¢(1) would return the time over-
head for test 71 and ¢(n) calculates the running time for the

Cover R(Ty) Cover U~ R(T;)

3 —C R(T
3 r over R(T)
o T,, Done
g
@
g
g «1— Area fot(n) C(T,t)
8
I Testing Time (t)

T1 Done T,_1 Done
Figure 3: The Cumulative Coverage of a Test Suite.

entire suite of n test cases. Finally, Equation (1) uses ¢ to
stand for a specific point in time during testing.

Ji™ o,
[eyt

If T covers the requirements in the set R(T'), then C(Tt)
in Equation (3) shows that an ideal suite would immediately
cover all R; € R(T). Equation (4) defines the step function
C(T,t) that describes the cumulative coverage of T" at time ¢
during testing. We define C(T',t) as an (n+1)-part piecewise
function when T' = (T1,...,T,). Equation (4) reveals that
C(T,t) = 0 until the completion of test case T1 (i.e., t <
t(1)). In the time period after the execution of 71 and during
the running of T> (i.e., ¢ € [t(1),¢(2))), the value of C shows
that T" has covered a total of |R(71)| requirements. The
function C' maintains the maximum height of |R(T')| for all
time points ¢t > ¢(n), as graphically depicted in Figure 3.
CE.(T) is formulated in a similar manner to Equations (1)
through (4), except that t(i) = ¢ for all T;.

CE(T) = (1) t(m) =Y time(Ti) (2)
=1

ey =||J R 3)
=1
0 t < t(1)
|R(TY)| te [t(1), ¢2)
Tty ={ : (4)
Ui R(T)| e [tn — 1), t(n)
R(T)| t> t(n)

In summary, we recommend that future empirical studies
use the CE and CE, metrics to evaluate different prioriti-
zation techniques. As part of future research, we intend to
investigate search-based techniques for identifying prioriti-
zations with high CE values. An open source CE calculator
and additional details about the metrics are available at:

http://cs.allegheny.edu/ gkapfham/research/kanonizo/

3. REFERENCES

[1] M. Hutchins, H. Foster, T. Goradia, and T. Ostrand.
Experiments of the effectiveness of dataflow- and
controlflow-based test adequacy criteria. In Proc of 16th
ICSE, pages 191-200, 1994.

[2] Z. Li, M. Harman, and R. Hierons. Search algorithms for
regression test case prioritization. IEEE Trans. on Soft.
Engin., 33(4):225-237, 2007.

[3] G. Rothermel, R. J. Untch, and C. Chu. Prioritizing test
cases for regression testing. IEEE Trans. on Softw. Eng.,
27(10):929-948, 2001.

[4] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
test factoring for Java. In Proc. of 20th ASE, 2005.

