
MAJOR: An Efficient and Extensible Tool for
Mutation Analysis in a Java Compiler

René Just and Franz Schweiggert
Department of Applied Information Processing

Ulm University
{rene.just,franz.schweiggert}@uni-ulm.de

Gregory M. Kapfhammer
Department of Computer Science

Allegheny College
gkapfham@allegheny.edu

Abstract—Mutation analysis is an effective, yet often time-
consuming and difficult-to-use method for the evaluation of
testing strategies. In response to these and other challenges,
this paper presents MAJOR, a fault seeding and mutation
analysis tool that is integrated into the Java Standard Edition
compiler as a non-invasive enhancement for use in any Java-
based development environment. MAJOR reduces the mutant
generation time and enables efficient mutation analysis. It has
already been successfully applied to large applications with
up to 373,000 lines of code and 406,000 mutants. Moreover,
MAJOR’s domain specific language for specifying and adapting
mutation operators also makes it extensible. Due to its ease-of-
use, efficiency, and extensibility, MAJOR is an ideal platform for
the study and application of mutation analysis.

I. INTRODUCTION

Originally introduced in [2], [3], mutation analysis is a well-
known technique for assessing testing strategies by injecting
artificial faults. These seeded faults, or mutants, can be used
to evaluate different software testing techniques, such as fault
finding methods, input value generation models, and oracle
solutions. Since mutation analysis is an expensive technique,
in comparison to schemes like code coverage analysis, several
approaches have been proposed to decrease its costs (cf.
[5]). Furthermore, various tools and frameworks for different
programming languages have been developed, which differ
with respect to their efficiency, flexibility, available mutation
operators, and the degree of automation.

This paper presents MAJOR, a compiler-integrated and non-
invasive tool that provides fast fault seeding for arbitrary
purposes, thus enabling efficient mutation analysis. The name
MAJOR is an acronym reflecting that it is a tool for mutation
analysis in a Java compiler. In contrast to existing tools
such as Jumble [4], MuJava [7], or Javalanche [9], MAJOR
is integrated into the Java compiler and does not require a
specific mutation analysis framework. Hence, it can be used
in any Java-based environment. The main contributions of
MAJOR can be summarized as follows:

• Integrated into the Java Standard Edition compiler
• Non-invasive and compiler-integrated implementation
• Fast and flexible fault seeding with built-in operators
• Extensibility through a domain specific language (DSL)
• Efficient mutation analysis by means of embedded mu-

tants and mutation coverage information

II. CONDITIONAL MUTATION

The conditional mutation approach generates mutants by
transforming the abstract syntax tree (AST) [6]. It uses con-
ditional expressions and statements to encapsulate all of the
mutants and the original version of the program in the same
basic block. An example method and its corresponding mu-
tated version are shown in Listings 1 and 2, where the binary
expression of the framed assignment is mutated. A concrete
mutant can be triggered by setting the mutant identifier M_NO
to the mutant’s number at runtime.

A mutant that is not reached and executed cannot be
detected under any circumstance. In order to avoid evaluating
these uncovered mutants, conditional mutation supports the
collection of additional information about the coverage of
the mutations at runtime. Listing 3 shows the extension of
the mutated binary expression, which provides the mutation
coverage information. For efficiency reasons, the covered
mutants are reported as ranges within the COVERED method.
public int eval(int x){

int a = 3, b = 1, y;

y = a * x;

y += b;
return y;

}

Listing 1. Example with an expression as right hand side of a statement.

public int eval(int x){
int a = 3, b = 1, y;

y = (M_NO==1)? a + x:
(M_NO==2)? a / x:
(M_NO==3)? a % x:

a * x; // original
y += b;
return y;

}

Listing 2. Example of an expression mutated with conditional mutation.

public int eval(int x){
int a = 3, b = 1, y;

y = (M_NO==1)? a + x:
(M_NO==2)? a / x:
(M_NO==3)? a % x:
(M_NO==0 && COVERED(1,3))?

a * x : a * x; // original
y += b;
return y;

}

Listing 3. Gathering coverage information with conditional mutation.

Fig. 1. Compiler-integrated mutation with configuration and driver.

III. IMPLEMENTATION DETAILS

As depicted in Figure 1, a compiler contains several phases,
which can be briefly described as follows:

• Parse: Build the AST by parsing the source code
• Attribute: Enhance the AST with semantic information
• Flow: Perform semantic and data flow analyses
• Lower: Simplify the AST and remove syntactic sugar
• Generate: Generate assembled or intermediate code
In MAJOR, conditional mutation is implemented as an

optional transformation of the compiler’s AST, which can
be enabled by means of common compiler options. If the
conditional mutation step is not chosen, then the compiler
works exactly as if it were unmodified. The compile-time con-
figuration of conditional mutation and the necessary runtime
driver are stored externally in order to avoid dependencies and
to provide a non-invasive tool. MAJOR’s implementation was
driven by the following considerations:

• The default behavior of the compiler must not be
changed. This criterion is obligatory in order to have one
compiler applicable within the build environment.

• The necessary changes within existing compiler classes
should be kept to a minimum to ensure that conditional
mutation can be implemented in future releases of the
Java compiler with little or no additional effort.

• All configuration possibilities have to be externalized
to forestall the need to recompile MAJOR for differ-
ent purposes. Moreover, conditional mutation within the
compiler must support the default command-line interface
so that it can be used standalone, in integrated develop-
ment environments (IDEs), and with frequently used build
systems such as Apache Ant.

• MAJOR must provide a sufficient set of mutation op-
erators in order to provide meaningful results that are
comparable to prior empirical studies [8], [10].

A. Configuration

In order to use the mutation capabilities of MAJOR, the con-
ditional mutation step has to be generally enabled at compile-
time using the corresponding compiler option. MAJOR also
provides either additional compiler options or mutation scripts
to support the compile-time configuration of the mutation

begin myOP:
// Define own replacement list for AOR
BIN(*) -> {/,%};
BIN(/) -> {*,%};
BIN(%) -> {*,/};

// Define own replacement list for ROR
BIN(>) -> {<=,!=,==};
BIN(==) -> {<,!=,>};

// Enable and invoke mutation operators
AOR;
ROR;
LVR;

end

Listing 4. Script to define the mutation operators and process in detail.

process. The compiler options can be used to choose from
the various built-in mutation operators that apply predefined
replacements. The following general operator groups are cur-
rently available within MAJOR via compiler options:

• ORB (Operator Replacement Binary): Replace a binary
arithmetic (AOR), logical (LOR), relational (ROR), or
shift (SOR) operator with valid alternatives. That is, ORB
is the union of AOR, LOR, ROR, and SOR.

• ORU (Operator Replacement Unary): Replace a unary
operator with valid alternatives.

• LVR (Literal Value Replacement): Replace a literal value
by a positive value, a negative value, and zero.

In order to avoid potential conflicts with future releases
of the Java compiler, MAJOR extends the non-standardized
-X options of the compiler. The conditional mutation step
can generally be enabled with -XMutator. Furthermore, this
option provides a wildcard and a list of valid sub-options,
which correspond to the names of the mutation operators. For
instance, the following two commands enable all operators by
means of the wildcard ALL (1) and a specified subset of the
available operators AOR, ROR, and ORU (2):
(1) javac -XMutator:ALL ...
(2) javac -XMutator:AOR,ROR,ORU ...

Instead of using compiler options, MAJOR can parse mu-
tation scripts written in a domain specific language. These
scripts enable a detailed definition and a flexible application of
mutation operators. For example, the replacement list for every
operator in an operator group can be specified and mutations
can be enabled or disabled for certain packages, classes,
or methods. The scripting language enhances the predefined
mutation options while using the compiler options’ keywords
for the operators. Listing 4 shows an example of a mutation
script that includes the following tasks:

• Define specific replacement lists for AOR and ROR
• Invoke the AOR and ROR operators on reduced lists
• Invoke the LVR operator without restrictions

B. Driver Class

The conditional mutation components reference the external
driver to gain access to the mutant identifier M_NO. Addition-
ally, the driver has to furnish the mutation coverage method
COVERED if mutation coverage has been enabled within the
compiler. Listing 5 shows an example of a driver class that

TABLE I
MEMORY CONSUMPTION OF MAJOR AND RUNTIME STATISTICS FOR THE INVESTIGATED APPLICATIONS.

Application LOC* Files Mutants Memory consumption* Runtime of test suite in seconds
generated covered killed original instrumented original instrumented

aspectj 372,751 1,975 406,382 20,144 10,361 559 813 (45.44%) 4.3 4.8 (11.63%)
apache ant 103,679 764 60,258 28,118 21,084 237 293 (23.63%) 331.0 335.0 (1.21%)
jfreechart 91,174 585 68,782 29,485 12,788 220 303 (37.73%) 15.0 18.0 (20.00%)

itext 74,318 395 124,184 12,793 4,546 217 325 (49.77%) 5.1 5.6 (9.80%)
java pathfinder 47,951 543 37,331 8,918 4,434 182 217 (19.23%) 17.0 22.0 (29.41%)
commons math 39,991 408 67,895 54,326 44,084 153 225 (47.06%) 67.0 83.0 (23.88%)
commons lang 19,394 85 25,783 21,144 16,153 104 149 (43.27%) 10.3 11.8 (14.56%)

numerics4j 3,647 73 5,869 4,900 401 73 90 (23.29%) 1.2 1.3 (8.33%)
*Physical lines of code as reported by sloccount (non-comment and non-blank lines) and memory consumption of the compiler in MB.

package major.mutation;

public class Driver{
public static final int MAX_NO=100000;
public static int[] COV = new int[MAX_NO];

public static int M_NO=0;

public static boolean COVERED(int from, int to){
for(int i=from; i<=to; ++i){

COV[i]++;
}
return false;

}
}

Listing 5. Simple driver class with mutant identifier and coverage method.

provides both the mutant identifier and the mutation coverage
method that gathers the coverage information at runtime. The
identifier and the coverage method must be implemented in a
static context to avoid any overhead caused by polymorphism
and instantiation. Nevertheless, the fully qualified name of the
driver class itself can be configured.

In order to keep MAJOR non-invasive, the driver class does
not have to be available on the classpath during compilation.
That means that MAJOR does not try to resolve the driver class
at compile-time but instead assumes that the mutant identifier
and the coverage method will be available in this class at
runtime. Thus, the mutants can be generated without having a
driver class available during compilation.

IV. PERFORMANCE EVALUATION

In order to evaluate the implementation of conditional
mutation, we applied MAJOR to eight open source projects,
which differ in size and application domain. Two aspects are of
particular interest, namely the runtime and memory overhead
of the modified compiler compared with the original version.
Additionally, we considered the runtime of the compiled and
mutated classes to estimate the overhead caused by injecting
the conditional expressions and statements. The graph in
Figure 2 shows the necessary compiler runtime for generating
and compiling the mutants compared with the original compile
time. The time needed is by far less than compiling a project
twice and is negligible in consideration of the number of
mutants. Since the mutants are generated and compiled on-
the-fly by exploiting the compiler’s AST, MAJOR avoids any
additional overhead and, in particular, precludes recompilation.
Therefore, the overhead for generating and compiling the
mutants is reduced to a minimum. As shown in Table I, the

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0 20000 40000 60000 80000 100000 120000 140000

C
o

m
p

ile
r

ru
n

ti
m

e
 i
n

 s
e

c
o

n
d

s

Number of mutants

apache ant
jfreechart

itext
java pathfinder
commons math
commons lang

numerics4j

Fig. 2. Compiler runtime for generating and compiling the mutants for all
projects except aspectj, whose high time overhead, with and without mutation
analysis, obscured the visualization of the relevant trends.

space overhead in terms of memory consumption is at most
50%. This overhead includes the necessary memory for all of
the transformation phases, including the expanded AST that
holds all of the generated mutants. We judge that MAJOR
can easily be applied on commodity workstations since it can
generate 406,000 mutants with a space overhead of only 45%.

The last column in Table I gives the runtime of the test suites
and reveals that the overhead associated with the inserted con-
ditional expressions and statements is application dependent.
While it is large for commons math (24%) and java pathfinder
(29%), it is really small for apache ant (1%). Overall, the
average runtime overhead of 15% is not significant. Further
details from the empirical evaluation of conditional mutation’s
performance can be found in [6].

Evaluating all generated mutants for all tests is an expensive
task and generally infeasible for large applications with a
significant number of mutants. However, if the goal is to assess
a complete test suite, it is sufficient to kill a mutant with one
test case. Thus, ordering the test suite according to the runtime
of the individual test cases leads to a reduced runtime since a
mutant, which can be revealed, is always killed just once, in
fact by the fastest test that can detect it.

Nevertheless, a test case usually covers a certain scenario
or functionality and hence can only kill mutants correspond-
ing to the covered methods and blocks. Moreover, mutants
may not be covered by any test case. Thus, the runtime
optimized analysis still leads to a significant overhead since
the whole test suite is executed for every uncovered mutant.

Fig. 3. Improved workflow for mutation analysis, enabled by MAJOR.

In order to avoid such unnecessary evaluations, a mutation
analysis process should always take coverage information into
account. Since MAJOR easily provides coverage information,
it not only reduces the runtime for fault seeding but it also
enables an efficient workflow for mutation analysis.

Due to the conditional mutation approach, all mutants and
the original version are embedded in the compiled classes.
Thus, the complete workflow that is shown in Figure 3 can be
performed without any recompilation. In order to determine
the runtime of the individual test cases of the corresponding
test suite, this workflow first runs the complete test suite on the
original program and captures the runtime of every test case.
Additionally, it gathers the mutation coverage information on
a per-test case basis (i.e., it knows which test case covers
which mutants after executing the complete test suite). Now, it
prioritizes all tests according to their runtime so that the fastest
test case will run first. Excluding the unreachable mutants,
every test case is run for every covered and yet not killed
mutant. Thus, the runtime of the complete mutation analysis
process is reduced since a mutant is always killed by the
fastest test case that can detect it.

The following example, derived from the commons math
application described in Table I, quantitatively demonstrates
the benefits of the improved mutation analysis workflow
enabled by MAJOR. For illustrative purposes, we focus on
the 13 tests for the genetic algorithm package in commons
math. With runtimes that vary between 4 ms and 520 ms,
these tests can reach 268 mutants and ultimately kill 180
mutants. Figure 4 shows the different runtimes of the mutation
analysis process, with and without employing mutation cover-
age information. Additionally, the optimized order of the test
cases is compared with the original and random orderings.
A curve with a steeper gradient in the graph kills more
mutants in less time, finishes the entire process earlier, and
hence indicates a better method. Since the runtimes of the
individual tests vary by two orders of magnitude, ordering
the tests and employing the coverage information significantly
reduces the runtime by 60% from 98 sec to 39 sec.

V. CONCLUSION AND FUTURE WORK

This paper describes MAJOR, a fault seeding and mutation
analysis system integrated into the Java Standard Edition
compiler. Designed as a non-invasive tool, it is applicable in
every Java-based environment and customizable with common
compiler options and its own domain specific language. So
far, MAJOR is implemented in the Java 6 Standard Edition
compiler and it has been applied to real-world programs
consisting of up to 373,000 lines of source code.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

N
u
m

b
e
r

o
f
k
ill

e
d
 m

u
ta

n
ts

Runtime in seconds

optimized order (using coverage information)

random order (using coverage information)

original order (using coverage information)

optimized order (without coverage information)

random order (without coverage information)

original order (without coverage information)

Fig. 4. Runtime of the mutation analysis process.

In order to further improve MAJOR, we plan to implement
new mutation operators and enhance the domain specific
language. We will also conduct a comprehensive study com-
paring MAJOR with the related tools that were mentioned
in Section I. Moreover, MAJOR’s ease-of-use, efficiency, and
extensibility will also enable, for the first time ever, the repli-
cation of prior experiments that primarily focused on relatively
simple programs written in the C programming language (e.g.,
[1], [10]). These same characteristics of MAJOR suggest that
the tool is ready for transfer into industrial practice. After
enhancing and completely evaluating both the domain specific
language and the implementation for the new Java 7 compiler,
MAJOR will be available for download on its project web site:

http://www.mathematik.uni-ulm.de/sai/major

REFERENCES

[1] J. H. Andrews, L. C. Briand, and Y. Labiche. Is mutation an appropriate
tool for testing experiments? In Proceedings of the 27th International
Conference on Software Engineering, ICSE ’05, pages 402–411, 2005.

[2] T. A. Budd. Mutation Analysis of Program Test Data. PhD thesis, Yale
University, 1980.

[3] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. IEEE Computer,
11(4):34–41, 1978.

[4] S. A. Irvine, T. Pavlinic, L. Trigg, J. G. Cleary, S. Inglis, and M. Utting.
Jumble Java byte code to measure the effectiveness of unit tests.
In Proceedings of the Testing: Academic and Industrial Conference
Practice and Research Techniques - MUTATION, pages 169–175, 2007.

[5] Y. Jia and M. Harman. An analysis and survey of the development
of mutation testing. Report TR-09-06, CREST Centre, King’s College
London, UK, 2009.

[6] R. Just, G. M. Kapfhammer, and F. Schweiggert. Using conditional
mutation to increase the efficiency of mutation analysis. In Proceedings
of the 6th Workshop on Automation of Software Test, AST ’11, pages
50–56, 2011.

[7] Y.-S. Ma, J. Offutt, and Y.-R. Kwon. MuJava: A mutation system for
Java. In Proceedings of the 28th International Conference on Software
Engineering, ICSE ’06, pages 827–830, 2006.

[8] A. J. Offutt, A. Lee, G. Rothermel, R. H. Untch, and C. Zapf.
An experimental determination of sufficient mutant operators. ACM
Transactions on Software Engineering and Methodology, 5(2):99–118,
1996.

[9] D. Schuler and A. Zeller. (Un-)covering equivalent mutants. In
Proceedings of the 3rd International Conference on Software Testing,
Verification and Validation, ICST ’10, pages 45–54, 2010.

[10] A. Siami Namin, J. H. Andrews, and D. J. Murdoch. Sufficient mutation
operators for measuring test effectiveness. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, pages
351–360, 2008.

